Dittmer Jens, Thøgersen Lea, Underhaug Jarl, Bertelsen Kresten, Vosegaard Thomas, Pedersen Jan M, Schiøtt Birgit, Tajkhorshid Emad, Skrydstrup Troels, Nielsen Niels Chr
Center for Insoluble Protein Structures (inSPIN), Department of Chemistry, University of Aarhus, Denmark.
J Phys Chem B. 2009 May 14;113(19):6928-37. doi: 10.1021/jp811494p.
Detailed insight into the interplay between antimicrobial peptides and biological membranes is fundamental to our understanding of the mechanism of bacterial ion channels and the action of these in biological host-defense systems. To explore this interplay, we have studied the incorporation, membrane-bound structure, and conformation of the antimicrobial peptide alamethicin in lipid bilayers using a combination of 1H liquid-state NMR spectroscopy and molecular dynamics (MD) simulations. On the basis of experimental NMR data, we evaluate simple in-plane and transmembrane incorporation models as well as pore formation for alamethicin in DMPC/DHPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine/1,2-dihexanoyl-sn-glycero-3-phosphatidylcholine) bicelles. Peptide-lipid nuclear Overhauser effect (NOE) and paramagnetic relaxation enhancement (PRE) data support a transmembrane configuration of the peptide in the bilayers, but they also reveal that the system cannot be described by a single simple conformational model because there is a very high degree of dynamics and heterogeneity in the three-component system. To explore the origin of this heterogeneity and dynamics, we have compared the NOE and PRE data with MD simulations of an ensemble of alamethicin peptides in a DMPC bilayer. From all-atom MD simulations, the contacts between peptide, lipid, and water protons are quantified over a time interval up to 95 ns. The MD simulations provide a statistical base that reflects our NMR data and even can explain some initially surprising NMR results concerning specific interactions between alamethicin and the lipids.
深入了解抗菌肽与生物膜之间的相互作用,对于我们理解细菌离子通道的机制以及它们在生物宿主防御系统中的作用至关重要。为了探究这种相互作用,我们结合了¹H液态核磁共振光谱和分子动力学(MD)模拟,研究了抗菌肽阿拉米辛在脂质双层中的掺入、膜结合结构和构象。基于实验核磁共振数据,我们评估了阿拉米辛在DMPC/DHPC(1,2-二肉豆蔻酰-sn-甘油-3-磷脂酰胆碱/1,2-二己酰-sn-甘油-3-磷脂酰胆碱)双分子层中的简单平面内和跨膜掺入模型以及孔形成。肽-脂核Overhauser效应(NOE)和顺磁弛豫增强(PRE)数据支持肽在双层中的跨膜构型,但它们也表明该系统不能用单一的简单构象模型来描述,因为在这个三元系统中存在非常高的动力学和异质性。为了探究这种异质性和动力学的起源,我们将NOE和PRE数据与DMPC双层中一组阿拉米辛肽的MD模拟进行了比较。通过全原子MD模拟,在长达95 ns的时间间隔内对肽、脂质和水质子之间的接触进行了量化。MD模拟提供了一个统计基础,反映了我们的核磁共振数据,甚至可以解释一些关于阿拉米辛与脂质之间特定相互作用的最初令人惊讶的核磁共振结果。