Suppr超能文献

单价阳离子对RNA发夹稳定性影响的测量。

Measurement of the effect of monovalent cations on RNA hairpin stability.

作者信息

Vieregg Jeffrey, Cheng Wei, Bustamante Carlos, Tinoco Ignacio

机构信息

Department of Physics, University of California, Berkeley, California 94720, USA.

出版信息

J Am Chem Soc. 2007 Dec 5;129(48):14966-73. doi: 10.1021/ja074809o. Epub 2007 Nov 13.

Abstract

Using optical tweezers, we have measured the effect of monovalent cation concentration and species on the folding free energy of five large (49-124 nt) RNA hairpins, including HIV-1 TAR and molecules approximating A.U and G.C homopolymers. RNA secondary structure thermodynamics are accurately described by a model consisting of nearest-neighbor interactions and additive loop and bulge terms. Melting of small (<15 bp) duplexes and hairpins in 1 M NaCl has been used to determine the parameters of this model, which is now used extensively to predict structure and folding dynamics. Few systematic measurements have been made in other ionic conditions or for larger structures. By applying mechanical force, we measured the work required to fold and unfold single hairpins at room temperature over a range of cation concentrations from 50 to 1000 mM. Free energies were then determined using the Crooks fluctuation theorem. We observed the following: (1) In most cases, the nearest-neighbor model accurately predicted the free energy of folding at 1 M NaCl. (2) Free energy was proportional to the logarithm of salt concentration. (3) Substituting potassium ions for sodium slightly decreased hairpin stability. The TAR hairpin also misfolded nearly twice as often in KCl, indicating a differential kinetic response. (4) Monovalent cation concentration affects RNA stability in a sequence-dependent manner. G.C helices were unaffected by changing salt concentration, A.U helices were modestly affected, and the hairpin loop was very sensitive. Surprisingly, the U.C.U bulge of TAR was found to be equally stable in all conditions tested. We also report a new estimate for the elastic parameters of single-stranded RNA.

摘要

我们使用光镊测量了单价阳离子浓度和种类对五个大的(49 - 124个核苷酸)RNA发夹折叠自由能的影响,其中包括HIV - 1 TAR以及近似A.U和G.C同聚物的分子。RNA二级结构热力学可以通过一个由近邻相互作用以及加性环和凸起项组成的模型精确描述。在1 M NaCl中对小的(<15个碱基对)双链体和发夹进行熔解已被用于确定该模型的参数,该模型现在被广泛用于预测结构和折叠动力学。在其他离子条件下或对于更大的结构,很少有系统的测量。通过施加机械力,我们测量了在室温下,阳离子浓度范围从50到1000 mM时,单个发夹折叠和解折叠所需的功。然后使用克鲁克斯涨落定理确定自由能。我们观察到以下几点:(1)在大多数情况下,近邻模型准确预测了在1 M NaCl时的折叠自由能。(2)自由能与盐浓度的对数成正比。(3)用钾离子替代钠离子会略微降低发夹的稳定性。TAR发夹在KCl中错误折叠的频率也几乎是在NaCl中的两倍,表明存在不同的动力学响应。(4)单价阳离子浓度以序列依赖的方式影响RNA稳定性。G.C螺旋不受盐浓度变化的影响,A.U螺旋受到适度影响,而发夹环非常敏感。令人惊讶地是,发现在所有测试条件下,TAR的U.C.U凸起同样稳定。我们还报告了单链RNA弹性参数的一个新估计值。

相似文献

1
Measurement of the effect of monovalent cations on RNA hairpin stability.
J Am Chem Soc. 2007 Dec 5;129(48):14966-73. doi: 10.1021/ja074809o. Epub 2007 Nov 13.
2
Molecular simulation studies of monovalent counterion-mediated interactions in a model RNA kissing loop.
J Mol Biol. 2009 Jul 24;390(4):805-19. doi: 10.1016/j.jmb.2009.05.071. Epub 2009 May 29.
3
Non-nearest-neighbor dependence of stability for group III RNA single nucleotide bulge loops.
RNA. 2014 Jun;20(6):825-34. doi: 10.1261/rna.043232.113. Epub 2014 Apr 17.
4
Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies.
Nature. 2005 Sep 8;437(7056):231-4. doi: 10.1038/nature04061.
5
Melting studies of short DNA hairpins: influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability.
Biopolymers. 1999 Oct 5;50(4):425-42. doi: 10.1002/(SICI)1097-0282(19991005)50:4<425::AID-BIP8>3.0.CO;2-B.
7
A test of the model to predict unusually stable RNA hairpin loop stability.
RNA. 2000 Apr;6(4):608-15. doi: 10.1017/s1355838200992495.
8
Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
Biochemistry. 2006 Feb 7;45(5):1400-7. doi: 10.1021/bi051750u.
9
Determination of the secondary structure of group II bulge loops using the fluorescent probe 2-aminopurine.
RNA. 2015 May;21(5):975-84. doi: 10.1261/rna.048306.114. Epub 2015 Mar 24.

引用本文的文献

2
Thermodynamic determination of RNA duplex stability in magnesium solutions.
Biophys J. 2023 Feb 7;122(3):565-576. doi: 10.1016/j.bpj.2022.12.025. Epub 2022 Dec 20.
3
RNA Captures More Cations than DNA: Insights from Molecular Dynamics Simulations.
J Phys Chem B. 2022 Nov 3;126(43):8646-8654. doi: 10.1021/acs.jpcb.2c04488. Epub 2022 Oct 19.
4
Differences in ion-RNA binding modes due to charge density variations explain the stability of RNA in monovalent salts.
Sci Adv. 2022 Jul 22;8(29):eabo1190. doi: 10.1126/sciadv.abo1190. Epub 2022 Jul 20.
5
Twisting DNA by salt.
Nucleic Acids Res. 2022 Jun 10;50(10):5726-5738. doi: 10.1093/nar/gkac445.
6
Na and K Ions Differently Affect Nucleosome Structure, Stability, and Interactions with Proteins.
Microsc Microanal. 2022 Feb;28(1):243-253. doi: 10.1017/S1431927621013751.
7
The nucleotide addition cycle of the SARS-CoV-2 polymerase.
Cell Rep. 2021 Aug 31;36(9):109650. doi: 10.1016/j.celrep.2021.109650. Epub 2021 Aug 17.
8
The nucleotide addition cycle of the SARS-CoV-2 polymerase.
bioRxiv. 2021 Mar 27:2021.03.27.437309. doi: 10.1101/2021.03.27.437309.
9
Single-Molecule Studies of Protein Folding with Optical Tweezers.
Annu Rev Biochem. 2020 Jun 20;89:443-470. doi: 10.1146/annurev-biochem-013118-111442.
10
Hofmeister Series for Metal-Cation-RNA Interactions: The Interplay of Binding Affinity and Exchange Kinetics.
Langmuir. 2020 Jun 2;36(21):5979-5989. doi: 10.1021/acs.langmuir.0c00851. Epub 2020 May 16.

本文引用的文献

1
NS3 helicase actively separates RNA strands and senses sequence barriers ahead of the opening fork.
Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13954-9. doi: 10.1073/pnas.0702315104. Epub 2007 Aug 20.
2
Real-time control of the energy landscape by force directs the folding of RNA molecules.
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7039-44. doi: 10.1073/pnas.0702137104. Epub 2007 Apr 16.
3
Tertiary structure of an RNA pseudoknot is stabilized by "diffuse" Mg2+ ions.
Biochemistry. 2007 Mar 20;46(11):2973-83. doi: 10.1021/bi0616753. Epub 2007 Feb 23.
4
Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results.
Biophys J. 2007 May 1;92(9):2996-3009. doi: 10.1529/biophysj.106.094052. Epub 2007 Feb 9.
5
Heat capacity changes associated with nucleic acid folding.
Biopolymers. 2006 May;82(1):38-58. doi: 10.1002/bip.20457.
6
Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods.
Biophys J. 2006 Jan 1;90(1):250-60. doi: 10.1529/biophysj.105.068049. Epub 2005 Oct 7.
7
Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies.
Nature. 2005 Sep 8;437(7056):231-4. doi: 10.1038/nature04061.
8
Elastic properties of a single-stranded charged homopolymeric ribonucleotide.
Phys Rev Lett. 2004 Sep 10;93(11):118102. doi: 10.1103/PhysRevLett.93.118102.
9
Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures.
Biochemistry. 2004 Mar 30;43(12):3537-54. doi: 10.1021/bi034621r.
10
Slow nucleic acid unzipping kinetics from sequence-defined barriers.
Eur Phys J E Soft Matter. 2003 Feb;10(2):153-61. doi: 10.1140/epje/e2003-00019-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验