Vecenie Christopher J, Morrow Catherine V, Zyra Allison, Serra Martin J
Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, Pennsylvania 16335, USA.
Biochemistry. 2006 Feb 7;45(5):1400-7. doi: 10.1021/bi051750u.
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequence of the types GCGXUAAUYCGC and GGUXUAAUYACC with Watson-Crick loop closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.1 to 5.1 kcal/mol. These results agree with the model previously developed [Vecenie, C. J., and Serra, M. J. (2004) Biochemistry 43, 11813] to predict the stability of RNA hairpin loops: DeltaG degrees (37L(n) = DeltaG degrees (37i(n) + DeltaG degrees (37MM) - 0.8 (if first mismatch is GA or UU) - 0.8 (if first mismatch is GG and loop is closed on the 5' side by a purine). Here, DeltaG degrees (37i(n) is the free energy for initiating a loop of n nucleotides, and DeltaG degrees (37MM) is the free energy for the interaction of the first mismatch with the closing base pair. Thermodynamic parameters are also reported for hairpin formation in 1 M NaCl by RNA sequence of the types GACGXUAAUYUGUC and GGUXUAAUYGCC with GU base pair closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.6 to 5.3 kcal/mol. These results allow the development of a model for predicting the stability of hairpin loops closed by GU base pairs. DeltaG degrees (37L(n) (kcal/mol) = DeltaG degrees (37i(n) - 0.8 (if the first mismatch is GA) - 0.8 (if the first mismatch is GG and the loop is closed on the 5' side by a purine). Note that for these hairpins, the stability of the loops does not depend on DeltaG degrees (37MM). For hairpin loops closed by GU base pairs, the DeltaG degrees (37i(n) values, when n = 4, 5, 6, 7, and 8, are 4.9, 5.0, 4.6, 5.0, and 4.8 kcal/mol, respectively. The model gives good agreement when tested against six naturally occurring hairpin sequences. Thermodynamic values for terminal mismatches adjacent to GC, GU, and UG base pairs are also reported.
报道了在1M NaCl中,具有沃森-克里克环闭合的GCGXUAAUYCGC和GGUXUAAUYACC类型的RNA序列形成发夹的热力学参数,其中XY是10种可能的错配碱基对组合。对数据的最近邻分析表明,37℃时环形成的自由能在3.1至5.1千卡/摩尔之间变化。这些结果与先前开发的[Vecenie, C. J., and Serra, M. J. (2004) Biochemistry 43, 11813]预测RNA发夹环稳定性的模型一致:ΔG°(37L(n)) = ΔG°(37i(n)) + ΔG°(37MM) - 0.8(如果第一个错配是GA或UU) - 0.8(如果第一个错配是GG且环在5'侧由嘌呤闭合)。这里,ΔG°(37i(n))是启动n个核苷酸环的自由能,ΔG°(37MM)是第一个错配与闭合碱基对相互作用的自由能。还报道了在1M NaCl中,具有GU碱基对闭合的GACGXUAAUYUGUC和GGUXUAAUYGCC类型的RNA序列形成发夹的热力学参数,其中XY是10种可能的错配碱基对组合。对数据的最近邻分析表明,37℃时环形成的自由能在3.6至5.3千卡/摩尔之间变化。这些结果有助于开发一个预测由GU碱基对闭合的发夹环稳定性的模型。ΔG°(37L(n))(千卡/摩尔) = ΔG°(37i(n)) - 0.8(如果第一个错配是GA) - 0.8(如果第一个错配是GG且环在5'侧由嘌呤闭合)。注意,对于这些发夹,环的稳定性不取决于ΔG°(37MM)。对于由GU碱基对闭合的发夹环,当n = 4、5、6、7和8时,ΔG°(37i(n))值分别为4.9、5.0、4.6、5.0和4.8千卡/摩尔。该模型在针对六个天然存在的发夹序列进行测试时给出了良好的一致性。还报道了与GC、GU和UG碱基对相邻的末端错配的热力学值。