Lin Yi, Boese Cody J, St Maurice Martin
Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201.
Protein Sci. 2016 Oct;25(10):1812-24. doi: 10.1002/pro.2990. Epub 2016 Aug 5.
Urea amidolyase (UAL) is a multifunctional biotin-dependent enzyme that contributes to both bacterial and fungal pathogenicity by catalyzing the ATP-dependent cleavage of urea into ammonia and CO2 . UAL is comprised of two enzymatic components: urea carboxylase (UC) and allophanate hydrolase (AH). These enzyme activities are encoded on separate but proximally related genes in prokaryotes while, in most fungi, they are encoded by a single gene that produces a fusion enzyme on a single polypeptide chain. It is unclear whether the UC and AH activities are connected through substrate channeling or other forms of direct communication. Here, we use multiple biochemical approaches to demonstrate that there is no substrate channeling or interdomain/intersubunit communication between UC and AH. Neither stable nor transient interactions can be detected between prokaryotic UC and AH and the catalytic efficiencies of UC and AH are independent of one another. Furthermore, an artificial fusion of UC and AH does not significantly alter the AH enzyme activity or catalytic efficiency. These results support the surprising functional independence of AH from UC in both the prokaryotic and fungal UAL enzymes and serve as an important reminder that the evolution of multifunctional enzymes through gene fusion events does not always correlate with enhanced catalytic function.
尿素酰胺水解酶(UAL)是一种多功能生物素依赖性酶,通过催化尿素在ATP依赖下裂解为氨和二氧化碳,对细菌和真菌的致病性均有作用。UAL由两种酶组分组成:尿素羧化酶(UC)和脲基甲酸水解酶(AH)。这些酶活性在原核生物中由单独但位置相近的相关基因编码,而在大多数真菌中,它们由一个基因编码,该基因在一条多肽链上产生一种融合酶。目前尚不清楚UC和AH的活性是通过底物通道化还是其他形式的直接通讯联系在一起的。在这里,我们使用多种生化方法来证明UC和AH之间不存在底物通道化或结构域间/亚基间通讯。在原核生物的UC和AH之间既检测不到稳定的相互作用,也检测不到瞬时相互作用,并且UC和AH的催化效率彼此独立。此外,UC和AH的人工融合不会显著改变AH的酶活性或催化效率。这些结果支持了在原核生物和真菌UAL酶中AH相对于UC令人惊讶的功能独立性,并有力地提醒我们,通过基因融合事件产生的多功能酶的进化并不总是与增强的催化功能相关。