Annesley Sarah J, Bandala-Sanchez Esther, Ahmed Afsar U, Fisher Paul R
Department of Microbiology, La Trobe University, Vic., Australia.
BMC Cell Biol. 2007 Nov 12;8:48. doi: 10.1186/1471-2121-8-48.
Filamin is an actin binding protein which is ubiquitous in eukaryotes and its basic structure is well conserved - an N-terminal actin binding domain followed by a series of repeated segments which vary in number in different organisms. D. discoideum is a well established model organism for the study of signalling pathways and the actin cytoskeleton and as such makes an excellent organism in which to study filamin. Ddfilamin plays a putative role as a scaffolding protein in a photosensory signalling pathway and this role is thought to be mediated by the unusual repeat segments in the rod domain.
To study the role of filamin in phototaxis, a filamin null mutant, HG1264, was transformed with constructs each of which expressed wild type filamin or a mutant filamin with a deletion of one of the repeat segments. Transformants expressing the full length filamin to wild type levels completely rescued the phototaxis defect in HG1264, however if filamin was expressed at lower than wild type levels the phototaxis defect was not restored. The transformants lacking any one of the repeat segments 2-6 retained defective phototaxis and thermotaxis phenotypes, whereas transformants expressing filaminDelta1 exhibited a range of partial complementation of the phototaxis phenotype which was related to expression levels. Immunofluorescence microscopy showed that filamin lacking any of the repeat segments still localised to the same actin rich areas as wild type filamin. Ddfilamin interacts with RasD and IP experiments demonstrated that this interaction did not rely upon any single repeat segment or the actin binding domain.
This paper demonstrates that wild type levels of filamin expression are essential for the formation of functional photosensory signalling complexes and that each of the repeat segments 2-6 are essential for filamins role in phototaxis. By contrast, repeat segment 1 is not essential provided the mutated filamin lacking repeat segment 1 is expressed at a high enough level. The defects in photo/thermosensory signal transduction caused by the absence of the repeats are due neither to mislocalisation of filamin nor to the loss of RasD recruitment to the previously described photosensory signalling complex.
细丝蛋白是一种肌动蛋白结合蛋白,在真核生物中普遍存在,其基本结构高度保守——一个N端肌动蛋白结合结构域,后面跟着一系列重复片段,不同生物体中重复片段的数量不同。盘基网柄菌是研究信号通路和肌动蛋白细胞骨架的成熟模式生物,因此是研究细丝蛋白的优秀生物体。盘基网柄菌细丝蛋白在光感受信号通路中作为一种支架蛋白发挥假定作用,并且认为该作用由杆状结构域中不寻常的重复片段介导。
为了研究细丝蛋白在趋光性中的作用,用分别表达野生型细丝蛋白或缺失一个重复片段的突变型细丝蛋白的构建体转化细丝蛋白缺失突变体HG1264。将全长细丝蛋白表达至野生型水平的转化体完全挽救了HG1264中的趋光性缺陷,然而,如果细丝蛋白的表达低于野生型水平,则趋光性缺陷未得到恢复。缺失重复片段2 - 6中任何一个的转化体保留了有缺陷的趋光性和趋温性表型,而表达细丝蛋白Delta1的转化体表现出一系列与表达水平相关的趋光性表型的部分互补。免疫荧光显微镜显示,缺失任何重复片段的细丝蛋白仍定位于与野生型细丝蛋白相同的富含肌动蛋白的区域。盘基网柄菌细丝蛋白与RasD相互作用,免疫沉淀实验表明这种相互作用不依赖于任何单个重复片段或肌动蛋白结合结构域。
本文证明细丝蛋白的野生型表达水平对于功能性光感受信号复合物的形成至关重要,并且重复片段2 - 6中的每一个对于细丝蛋白在趋光性中的作用都是必不可少的。相比之下,如果缺失重复片段1的突变型细丝蛋白表达水平足够高,则重复片段1不是必需的。由于缺失重复片段导致的光/热感受信号转导缺陷既不是由于细丝蛋白的定位错误,也不是由于RasD募集到先前描述的光感受信号复合物的丧失。