Suppr超能文献

一种基于决策树的方法,使用WEKA软件确定炎症性肠病中的低骨矿物质密度。

A decision tree-based approach for determining low bone mineral density in inflammatory bowel disease using WEKA software.

作者信息

Firouzi Farzad, Rashidi Marjan, Hashemi Sattar, Kangavari Mohammadreza, Bahari Ali, Daryani Naser Ebrahimi, Emam Mohammad Mehdi, Naderi Nosratollah, Shalmani Hamid Mohaghegh, Farnood Alma, Zali Mohammadreza

机构信息

Department of Inflammatory Bowel Disease, Research Center for Gastroenterology and Liver Diseases, Shaheed Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Eur J Gastroenterol Hepatol. 2007 Dec;19(12):1075-81. doi: 10.1097/MEG.0b013e3282202bb8.

Abstract

BACKGROUND

Decision tree classification is a standard machine learning technique that has been used for a wide range of applications. Patients with inflammatory bowel disease (IBD) are at increased risk of developing low bone mineral density (BMD). This study aimed at developing a new approach to select truly affected IBD patients who are indicated for densitometry, hence, subjecting fewer patients for bone densitometry and reducing expenses.

MATERIALS AND METHODS

Simple decision trees have been developed by means of WEKA (Waikato Environment for Knowledge Analysis) package of machine learning algorithms to predict factors influencing the bone density among IBD patients. The BMD status was the outcome variable whereas age, sex, duration of disease, smoking status, corticosteroid use, oral contraceptive use, calcium or vitamin D supplementation, menstruation, milk abstinence, BMI, and levels of calcium, phosphorous, alkaline phosphatase, and 25-OH vitamin D were all attributes.

RESULTS

Testing showed the decision trees to have sensitivities of 65.7-82.8%, specificities of 95.2-96.3%, accuracies of 86.2-89.8%, and Matthews correlation coefficients of 0.68-0.79. Smoking status was the most significant node (root) for ulcerative colitis and IBD-associated trees whereas calcium status was the root of Crohn's disease patients' decision tree.

CONCLUSION

BD specialists could use such decision trees to reduce substantially the number of patients referred for bone densitometry and potentially save resources.

摘要

背景

决策树分类是一种标准的机器学习技术,已被广泛应用于众多领域。炎症性肠病(IBD)患者发生低骨矿物质密度(BMD)的风险增加。本研究旨在开发一种新方法,以筛选出真正需要进行骨密度测定的IBD患者,从而减少接受骨密度测定的患者数量并降低费用。

材料与方法

通过机器学习算法的WEKA(怀卡托知识分析环境)软件包开发简单决策树,以预测影响IBD患者骨密度的因素。BMD状态为结果变量,而年龄、性别、病程、吸烟状况、使用皮质类固醇、使用口服避孕药、补充钙或维生素D、月经情况、不饮用牛奶、BMI以及钙、磷、碱性磷酸酶和25-羟基维生素D水平均为属性。

结果

测试表明,决策树的敏感性为65.7 - 82.8%,特异性为95.2 - 96.3%,准确率为86.2 - 89.8%,马修斯相关系数为0.68 - 0.79。吸烟状况是溃疡性结肠炎和IBD相关决策树中最重要的节点(根节点),而钙状态是克罗恩病患者决策树的根节点。

结论

骨密度专家可使用此类决策树大幅减少转介进行骨密度测定的患者数量,并可能节省资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验