Suppr超能文献

工程材料中自修复血管网络的仿生可靠性策略。

Biomimetic reliability strategies for self-healing vascular networks in engineering materials.

作者信息

Williams H R, Trask R S, Knights A C, Williams E R, Bond I P

机构信息

Department of Aerospace Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK.

出版信息

J R Soc Interface. 2008 Jul 6;5(24):735-47. doi: 10.1098/rsif.2007.1251.

Abstract

Self-healing via a vascular network is an active research topic, with several recent publications reporting the application and optimization of these systems. This work represents the first consideration of the probable failure modes of a self-healing system as a driver for network design. The critical failure modes of a proposed self-healing system based on a vascular network were identified via a failure modes, effects and criticality analysis and compared to those of the human circulatory system. A range of engineering and biomimetic design concepts to address these critical failure modes is suggested with minimum system mass the overall design driver for high-performance systems. Plant vasculature has been mimicked to propose a segregated network to address the risk of fluid leakage. This approach could allow a network to be segregated into six separate paths with a system mass penalty of only approximately 25%. Fluid flow interconnections that mimic the anastomoses of animal vasculatures can be used within a segregated network to balance the risk of failure by leakage and blockage. These biomimetic approaches define a design space that considers the existing published literature in the context of system reliability.

摘要

通过血管网络实现自我修复是一个活跃的研究课题,最近有几篇出版物报道了这些系统的应用和优化。这项工作首次将自我修复系统可能的失效模式作为网络设计的驱动因素进行了考虑。通过失效模式、影响及危害性分析,确定了一种基于血管网络的拟议自我修复系统的关键失效模式,并将其与人体循环系统的失效模式进行了比较。针对这些关键失效模式,提出了一系列工程和仿生设计概念,以最小系统质量作为高性能系统的总体设计驱动因素。模仿植物脉管系统,提出了一种隔离网络来解决流体泄漏风险。这种方法可以将网络分隔成六条独立路径,系统质量仅增加约25%。在隔离网络中,可以使用模仿动物脉管系统吻合处的流体流动互连来平衡泄漏和堵塞导致的失效风险。这些仿生方法定义了一个设计空间,该空间在系统可靠性的背景下考虑了现有的已发表文献。

相似文献

2
4
Pressurized vascular systems for self-healing materials.用于自修复材料的加压血管系统。
J R Soc Interface. 2012 May 7;9(70):1020-8. doi: 10.1098/rsif.2011.0508. Epub 2011 Sep 28.
8
Self-healing at the nanoscale.纳米尺度的自修复。
Nanoscale. 2009 Oct;1(1):74-88. doi: 10.1039/b9nr00146h. Epub 2009 Aug 28.
9
Flow optimization in vascular networks.血管网络中的流量优化。
Math Biosci Eng. 2017 Jun 1;14(3):607-624. doi: 10.3934/mbe.2017035.
10
Self-healing materials with microvascular networks.具有微血管网络的自愈材料。
Nat Mater. 2007 Aug;6(8):581-5. doi: 10.1038/nmat1934. Epub 2007 Jun 10.

本文引用的文献

3
Self-healing materials with microvascular networks.具有微血管网络的自愈材料。
Nat Mater. 2007 Aug;6(8):581-5. doi: 10.1038/nmat1934. Epub 2007 Jun 10.
4

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验