Cunningham-Williams Renee M, Hong Song Iee
George Warren Brown School of Social Work, Washington University, St. Louis, Missouri 63130, USA.
J Nerv Ment Dis. 2007 Nov;195(11):939-47. doi: 10.1097/NMD.0b013e31815947e1.
Problem gambling rates are relatively low (2%-4%), yet these gamblers experience multisystemic negative consequences, high comorbidity, and low treatment utilization. We aimed to characterize variations in gambling patterns to inform prevention and intervention efforts. Using community advertising, we recruited a diverse sample of lifetime gamblers (n = 312) for telephone interviews for a psychometric study of the newly developed Computerized-Gambling Assessment Module. Latent Class Analysis enumerated and classified gambling subgroups by distinctive gambling patterns, based on 8 composite scales functioning as validators of latent class membership (i.e., diagnostic gambling symptoms, reasons for gambling, gambling "withdrawal-like" symptoms, problem gambling perceptions, gambling venues, financial sources for gambling, gambling treatment/help-seeking, and religiosity/spirituality). Based on a distinguishing clustering pattern driven by 6 of 8 factors, we found a 6-class solution was the best-fitting solution. Gambling severity is most strongly characterized not only by symptomatology but also by the number of gambling treatment/help-seeking sources used.
问题赌博的发生率相对较低(2%-4%),然而这些赌徒会经历多系统的负面后果、高共病率以及低治疗利用率。我们旨在描述赌博模式的差异,以为预防和干预工作提供信息。通过社区宣传,我们招募了不同类型的终生赌徒样本(n = 312),以便对新开发的计算机化赌博评估模块进行电话访谈,开展一项心理测量研究。潜在类别分析根据8个综合量表(即诊断性赌博症状、赌博原因、赌博“类似戒断”症状、问题赌博认知、赌博场所、赌博资金来源、赌博治疗/寻求帮助以及宗教信仰/精神性)作为潜在类别成员的验证指标,按独特的赌博模式对赌博亚组进行枚举和分类。基于8个因素中的6个因素驱动的显著聚类模式,我们发现6类解决方案是最佳拟合方案。赌博严重程度不仅最强烈地由症状学表征,还由所使用的赌博治疗/寻求帮助来源的数量表征。