Suppr超能文献

酵母液泡H⁺-ATP酶的长生理作用范围。

The long physiological reach of the yeast vacuolar H+-ATPase.

作者信息

Kane Patricia M

机构信息

Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.

出版信息

J Bioenerg Biomembr. 2007 Dec;39(5-6):415-21. doi: 10.1007/s10863-007-9112-z.

Abstract

V-ATPases are structurally conserved and functionally versatile proton pumps found in all eukaryotes. The yeast V-ATPase has emerged as a major model system, in part because yeast mutants lacking V-ATPase subunits (vma mutants) are viable and exhibit a distinctive Vma- phenotype. Yeast vma mutants are present in ordered collections of all non-essential yeast deletion mutants, and a number of additional phenotypes of these mutants have emerged in recent years from genomic screens. This review summarizes the many phenotypes that have been associated with vma mutants through genomic screening. The results suggest that V-ATPase activity is important for an unexpectedly wide range of cellular processes. For example, vma mutants are hypersensitive to multiple forms of oxidative stress, suggesting an antioxidant role for the V-ATPase. Consistent with such a role, vma mutants display oxidative protein damage and elevated levels of reactive oxygen species, even in the absence of an exogenous oxidant. This endogenous oxidative stress does not originate at the electron transport chain, and may be extra-mitochondrial, perhaps linked to defective metal ion homeostasis in the absence of a functional V-ATPase. Taken together, genomic data indicate that the physiological reach of the V-ATPase is much longer than anticipated. Further biochemical and genetic dissection is necessary to distinguish those physiological effects arising directly from the enzyme's core functions in proton pumping and organelle acidification from those that reflect broader requirements for cellular pH homeostasis or alternative functions of V-ATPase subunits.

摘要

V型ATP酶是在所有真核生物中发现的结构保守且功能多样的质子泵。酵母V型ATP酶已成为一个主要的模型系统,部分原因是缺乏V型ATP酶亚基的酵母突变体(vma突变体)能够存活,并表现出独特的Vma-表型。酵母vma突变体存在于所有非必需酵母缺失突变体的有序集合中,近年来通过基因组筛选又发现了这些突变体的许多其他表型。本综述总结了通过基因组筛选与vma突变体相关的众多表型。结果表明,V型ATP酶活性对于一系列出人意料的细胞过程都很重要。例如,vma突变体对多种形式的氧化应激高度敏感,这表明V型ATP酶具有抗氧化作用。与这一作用一致,即使在没有外源氧化剂的情况下,vma突变体也会出现氧化蛋白损伤和活性氧水平升高的情况。这种内源性氧化应激并非起源于电子传递链,可能是线粒体外的,也许与缺乏功能性V型ATP酶时金属离子稳态缺陷有关。综合来看,基因组数据表明V型ATP酶的生理作用范围比预期的要长得多。需要进一步的生化和遗传学剖析,以区分那些直接源于该酶在质子泵浦和细胞器酸化中的核心功能所产生的生理效应,与那些反映对细胞pH稳态更广泛需求或V型ATP酶亚基其他功能的生理效应。

相似文献

1
The long physiological reach of the yeast vacuolar H+-ATPase.
J Bioenerg Biomembr. 2007 Dec;39(5-6):415-21. doi: 10.1007/s10863-007-9112-z.
2
A genomic screen for yeast vacuolar membrane ATPase mutants.
Genetics. 2005 Aug;170(4):1539-51. doi: 10.1534/genetics.105.042812. Epub 2005 Jun 3.
3
Close-up and genomic views of the yeast vacuolar H+-ATPase.
J Bioenerg Biomembr. 2005 Dec;37(6):399-403. doi: 10.1007/s10863-005-9479-7.
4
Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress.
J Biol Chem. 2007 Mar 9;282(10):7125-36. doi: 10.1074/jbc.M608293200. Epub 2007 Jan 10.
5
Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast.
J Biol Chem. 2008 Jul 18;283(29):20309-19. doi: 10.1074/jbc.M710470200. Epub 2008 May 23.
6
Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.
Appl Environ Microbiol. 2016 May 2;82(10):3121-3130. doi: 10.1128/AEM.00376-16. Print 2016 May 15.
8
Loss of vacuolar H+-ATPase activity in organelles signals ubiquitination and endocytosis of the yeast plasma membrane proton pump Pma1p.
J Biol Chem. 2014 Nov 14;289(46):32316-32326. doi: 10.1074/jbc.M114.574442. Epub 2014 Sep 30.
10
Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly.
J Biol Chem. 2014 Jul 11;289(28):19448-57. doi: 10.1074/jbc.M114.569855. Epub 2014 May 23.

引用本文的文献

1
Early responses to hyperosmotic stress at the yeast vacuole.
bioRxiv. 2025 Aug 13:2025.08.11.669746. doi: 10.1101/2025.08.11.669746.
2
Monoclonal nanobodies alter the activity and assembly of the yeast vacuolar H-ATPase.
bioRxiv. 2025 Jan 11:2025.01.10.632502. doi: 10.1101/2025.01.10.632502.
3
The role of ion homeostasis in adaptation and tolerance to acetic acid stress in yeasts.
FEMS Yeast Res. 2024 Jan 9;24. doi: 10.1093/femsyr/foae016.
5
Fisetin-Mediated Perturbations of Membrane Permeability and Intracellular pH in .
J Microbiol Biotechnol. 2024 Apr 28;34(4):783-794. doi: 10.4014/jmb.2311.11027. Epub 2024 Jan 10.
6
The cytosolic N-terminal domain of V-ATPase a-subunits is a regulatory hub targeted by multiple signals.
Front Mol Biosci. 2023 Jun 16;10:1168680. doi: 10.3389/fmolb.2023.1168680. eCollection 2023.
7
Chimeric a-subunit isoforms generate functional yeast V-ATPases with altered regulatory properties in vitro and in vivo.
Mol Biol Cell. 2023 Mar 1;34(3):ar14. doi: 10.1091/mbc.E22-07-0265. Epub 2023 Jan 4.
9
10
The Importance of Vacuolar Ion Homeostasis and Trafficking in Hyphal Development and Virulence in .
Front Microbiol. 2021 Dec 9;12:779176. doi: 10.3389/fmicb.2021.779176. eCollection 2021.

本文引用的文献

2
A phenomics approach in yeast links proton and calcium pump function in the Golgi.
Mol Biol Cell. 2007 Apr;18(4):1480-9. doi: 10.1091/mbc.e06-11-1049. Epub 2007 Feb 21.
3
Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress.
J Biol Chem. 2007 Mar 9;282(10):7125-36. doi: 10.1074/jbc.M608293200. Epub 2007 Jan 10.
6
New insights into the regulation of V-ATPase-dependent proton secretion.
Am J Physiol Renal Physiol. 2007 Jan;292(1):F1-10. doi: 10.1152/ajprenal.00340.2006. Epub 2006 Oct 10.
7
Free radicals and antioxidants in normal physiological functions and human disease.
Int J Biochem Cell Biol. 2007;39(1):44-84. doi: 10.1016/j.biocel.2006.07.001. Epub 2006 Aug 4.
8
PKR1 encodes an assembly factor for the yeast V-type ATPase.
J Biol Chem. 2006 Oct 20;281(42):32025-35. doi: 10.1074/jbc.M606451200. Epub 2006 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验