Suppr超能文献

酵母磷酸果糖激酶-1亚基Pfk2p对于pH稳态和葡萄糖依赖性液泡ATP酶的重新组装是必需的。

Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly.

作者信息

Chan Chun-Yuan, Parra Karlett J

机构信息

From the Department of Biochemistry and Molecular Biology of the School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131.

From the Department of Biochemistry and Molecular Biology of the School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131

出版信息

J Biol Chem. 2014 Jul 11;289(28):19448-57. doi: 10.1074/jbc.M114.569855. Epub 2014 May 23.

Abstract

V-ATPases are conserved ATP-driven proton pumps that acidify organelles. Yeast V-ATPase assembly and activity are glucose-dependent. Glucose depletion causes V-ATPase disassembly and its inactivation. Glucose readdition triggers reassembly and resumes proton transport and organelle acidification. We investigated the roles of the yeast phosphofructokinase-1 subunits Pfk1p and Pfk2p for V-ATPase function. The pfk1Δ and pfk2Δ mutants grew on glucose and assembled wild-type levels of V-ATPase pumps at the membrane. Both phosphofructokinase-1 subunits co-immunoprecipitated with V-ATPase in wild-type cells; upon deletion of one subunit, the other subunit retained binding to V-ATPase. The pfk2Δ cells exhibited a partial vma growth phenotype. In vitro ATP hydrolysis and proton transport were reduced by 35% in pfk2Δ membrane fractions; they were normal in pfk1Δ. In vivo, the pfk1Δ and pfk2Δ vacuoles were alkalinized and the cytosol acidified, suggestive of impaired V-ATPase proton transport. Overall the pH alterations were more dramatic in pfk2Δ than pfk1Δ at steady state and after readdition of glucose to glucose-deprived cells. Glucose-dependent reassembly was 50% reduced in pfk2Δ, and the vacuolar lumen was not acidified after reassembly. RAVE-assisted glucose-dependent reassembly and/or glucose signals were disturbed in pfk2Δ. Binding of disassembled V-ATPase (V1 domain) to its assembly factor RAVE (subunit Rav1p) was 5-fold enhanced, indicating that Pfk2p is necessary for V-ATPase regulation by glucose. Because Pfk1p and Pfk2p are necessary for V-ATPase proton transport at the vacuole in vivo, a role for glycolysis at regulating V-ATPase proton transport is discussed.

摘要

V-ATP酶是保守的ATP驱动质子泵,可酸化细胞器。酵母V-ATP酶的组装和活性依赖于葡萄糖。葡萄糖耗尽会导致V-ATP酶解体并使其失活。重新添加葡萄糖会触发重新组装,并恢复质子运输和细胞器酸化。我们研究了酵母磷酸果糖激酶-1亚基Pfk1p和Pfk2p在V-ATP酶功能中的作用。pfk1Δ和pfk2Δ突变体在葡萄糖上生长,并在膜上组装野生型水平的V-ATP酶泵。在野生型细胞中,两个磷酸果糖激酶-1亚基都与V-ATP酶共免疫沉淀;删除一个亚基后,另一个亚基仍与V-ATP酶结合。pfk2Δ细胞表现出部分vma生长表型。在pfk2Δ膜组分中,体外ATP水解和质子运输减少了35%;在pfk1Δ中则正常。在体内,pfk1Δ和pfk2Δ液泡碱化,细胞质酸化,提示V-ATP酶质子运输受损。总体而言,在稳态以及向葡萄糖缺乏细胞重新添加葡萄糖后,pfk2Δ中的pH变化比pfk1Δ更显著。pfk2Δ中葡萄糖依赖性重新组装减少了50%,重新组装后液泡腔未酸化。pfk2Δ中RAVE辅助的葡萄糖依赖性重新组装和/或葡萄糖信号受到干扰。解体的V-ATP酶(V1结构域)与其组装因子RAVE(亚基Rav1p)的结合增强了5倍,表明Pfk2p对于葡萄糖对V-ATP酶的调节是必需的。由于Pfk1p和Pfk2p对于体内液泡中V-ATP酶的质子运输是必需的,因此讨论了糖酵解在调节V-ATP酶质子运输中的作用。

相似文献

1
Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly.
J Biol Chem. 2014 Jul 11;289(28):19448-57. doi: 10.1074/jbc.M114.569855. Epub 2014 May 23.
2
Regulation of Vacuolar H+-ATPase (V-ATPase) Reassembly by Glycolysis Flow in 6-Phosphofructo-1-kinase (PFK-1)-deficient Yeast Cells.
J Biol Chem. 2016 Jul 22;291(30):15820-9. doi: 10.1074/jbc.M116.717488. Epub 2016 May 23.
4
Defining steps in RAVE-catalyzed V-ATPase assembly using purified RAVE and V-ATPase subcomplexes.
J Biol Chem. 2021 Jan-Jun;296:100703. doi: 10.1016/j.jbc.2021.100703. Epub 2021 Apr 22.
7
RAVE and Rabconnectin-3 Complexes as Signal Dependent Regulators of Organelle Acidification.
Front Cell Dev Biol. 2021 Jun 24;9:698190. doi: 10.3389/fcell.2021.698190. eCollection 2021.
8
Functional complementation reveals that 9 of the 13 human V-ATPase subunits can functionally substitute for their yeast orthologs.
J Biol Chem. 2019 May 17;294(20):8273-8285. doi: 10.1074/jbc.RA118.006192. Epub 2019 Apr 5.
9
RAVE is essential for the efficient assembly of the C subunit with the vacuolar H(+)-ATPase.
J Biol Chem. 2007 Sep 7;282(36):26185-94. doi: 10.1074/jbc.M703627200. Epub 2007 Jul 10.
10
Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast.
J Biol Chem. 2008 Jul 18;283(29):20309-19. doi: 10.1074/jbc.M710470200. Epub 2008 May 23.

引用本文的文献

2
Molecular mechanism of Oxr1p mediated disassembly of yeast V-ATPase.
EMBO Rep. 2024 May;25(5):2323-2347. doi: 10.1038/s44319-024-00126-5. Epub 2024 Apr 2.
3
Impaired Autophagic Flux in Glucose-Deprived Cells: An Outcome of Lysosomal Acidification Failure Exacerbated by Mitophagy Dysfunction.
Mol Cells. 2023 Nov 30;46(11):655-663. doi: 10.14348/molcells.2023.0121. Epub 2023 Oct 23.
4
The cytosolic N-terminal domain of V-ATPase a-subunits is a regulatory hub targeted by multiple signals.
Front Mol Biosci. 2023 Jun 16;10:1168680. doi: 10.3389/fmolb.2023.1168680. eCollection 2023.
5
Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase.
Bioessays. 2023 Jul;45(7):e2200251. doi: 10.1002/bies.202200251. Epub 2023 May 15.
6
The Plant V-ATPase.
Front Plant Sci. 2022 Jun 30;13:931777. doi: 10.3389/fpls.2022.931777. eCollection 2022.
7
Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner.
EMBO J. 2022 Feb 1;41(3):e109360. doi: 10.15252/embj.2021109360. Epub 2021 Dec 17.
8
RAVE and Rabconnectin-3 Complexes as Signal Dependent Regulators of Organelle Acidification.
Front Cell Dev Biol. 2021 Jun 24;9:698190. doi: 10.3389/fcell.2021.698190. eCollection 2021.
9
Regulation and function of V-ATPases in physiology and disease.
Biochim Biophys Acta Biomembr. 2020 Dec 1;1862(12):183341. doi: 10.1016/j.bbamem.2020.183341. Epub 2020 May 16.

本文引用的文献

1
2
The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast.
Mol Biol Cell. 2014 Feb;25(3):356-67. doi: 10.1091/mbc.E13-05-0231. Epub 2013 Dec 4.
5
An experimental study of the regulation of glycolytic oscillations in yeast.
FEBS J. 2013 Dec;280(23):6033-44. doi: 10.1111/febs.12522. Epub 2013 Oct 11.
6
Regulation of luminal acidification by the V-ATPase.
Physiology (Bethesda). 2013 Sep;28(5):318-29. doi: 10.1152/physiol.00007.2013.
7
Glycolytic control of vacuolar-type ATPase activity: a mechanism to regulate influenza viral infection.
Virology. 2013 Sep;444(1-2):301-9. doi: 10.1016/j.virol.2013.06.026. Epub 2013 Jul 19.
8
V-ATPase is a candidate therapeutic target for Ewing sarcoma.
Biochim Biophys Acta. 2013 Aug;1832(8):1105-16. doi: 10.1016/j.bbadis.2013.04.003. Epub 2013 Apr 8.
9
Protein kinase A-dependent and -independent activation of the V-ATPase in Malpighian tubules of Aedes aegypti.
J Exp Biol. 2013 Mar 1;216(Pt 5):881-91. doi: 10.1242/jeb.078360. Epub 2012 Nov 29.
10
Priming a molecular motor for disassembly.
Structure. 2012 Nov 7;20(11):1799-800. doi: 10.1016/j.str.2012.10.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验