Suppr超能文献

使用经验模态分解(EMD)对模拟应激心电图进行R波检测和信号平均

R-peak detection and signal averaging for simulated stress ECG using EMD.

作者信息

Nimunkar Amit J, Tompkins Willis J

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1261-4. doi: 10.1109/IEMBS.2007.4352526.

Abstract

This study used empirical mode decomposition (EMD) for R-peak detection in electrocardiogram signals in the presence of electromyogram-like noise. The EMG was modeled as random white Gaussian noise with a signal-to-noise ratio (SNR) in the range of around -10 dB to -20 dB. The EMD-based R-peak detection technique gives results comparable to those obtained with the Pan-Tompkins algorithm. The EMD technique is implemented for filtering of noisy ECG signals and is further compared with a traditional low-pass filtering approach. Finally signal averaging is performed using the EMD-based R-peak detection and filtering approach and compared with the standard signal averaging technique. We conclude that the EMD based technique for R-peak detection and filtering shows promise for enhancement of the stress ECG.

摘要

本研究在存在类肌电图噪声的情况下,使用经验模态分解(EMD)进行心电图信号中的R波检测。肌电图被建模为信噪比(SNR)在约-10 dB至-20 dB范围内的随机白高斯噪声。基于EMD的R波检测技术给出的结果与使用Pan-Tompkins算法获得的结果相当。实施EMD技术用于对有噪声的心电图信号进行滤波,并进一步与传统的低通滤波方法进行比较。最后,使用基于EMD的R波检测和滤波方法进行信号平均,并与标准信号平均技术进行比较。我们得出结论,基于EMD的R波检测和滤波技术有望增强应激心电图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验