Meyer Carsten, Fernández Gavela José, Harris Matthew
Philips Research Laboratories, Aachen, Germany.
IEEE Trans Inf Technol Biomed. 2006 Jul;10(3):468-75. doi: 10.1109/titb.2006.875662.
QRS complex and specifically R-Peak detection is the crucial first step in every automatic electrocardiogram analysis. Much work has been carried out in this field, using various methods ranging from filtering and threshold methods, through wavelet methods, to neural networks and others. Performance is generally good, but each method has situations where it fails. In this paper, we suggest an approach to automatically combine different QRS complex detection algorithms, here the Pan-Tompkins and wavelet algorithms, to benefit from the strengths of both methods. In particular, we introduce parameters allowing to balance the contribution of the individual algorithms; these parameters are estimated in a data-driven way. Experimental results and analysis are provided on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia Database. We show that our combination approach outperforms both individual algorithms.
QRS 复合波检测,特别是 R 波峰值检测,是每一次自动心电图分析中至关重要的第一步。该领域已经开展了大量工作,使用了从滤波和阈值方法、小波方法到神经网络等各种方法。总体性能良好,但每种方法都有失效的情况。在本文中,我们提出了一种自动组合不同 QRS 复合波检测算法的方法,这里是 Pan-Tompkins 算法和小波算法,以利用两种方法的优势。特别是,我们引入了一些参数来平衡各个算法的贡献;这些参数是以数据驱动的方式进行估计的。在麻省理工学院 - 贝斯以色列女执事医疗中心(MIT - BIH)心律失常数据库上提供了实验结果和分析。我们表明,我们的组合方法优于单独的两种算法。