Suppr超能文献

基于水平集的数字化乳腺钼靶X线摄影中毛刺状肿块检测及毛刺分割

Digital mammogram spiculated mass detection and spicule segmentation using level sets.

作者信息

Ball John E, Bruce Lori Mann

机构信息

GeoResources Institute, Mississippi State University, Starkville, MS 39759, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:4979-84. doi: 10.1109/IEMBS.2007.4353458.

Abstract

This letter presents an automated mammographic computer aided diagnosis (CAD) system to detect and segment spicules in digital mammograms, termed spiculation segmentation with level sets (SSLS). SSLS begins with a segmentation of the suspicious mass periphery, which is created using a previously developed adaptive level set segmentation algorithm (ALSSM) by the authors. The mammogram is then analyzed using features derived from the Dixon and Taylor Line Operator (DTLO), which is a method of linear structure enhancement. Features are extracted, optimized, and then the suspicious mass is classified as benign or malignant. To assess the system efficacy, 60 difficult mammographic images from the Digital Database of Screening Mammography (DDSM), containing 30 benign non-spiculated cases, 17 malignant spiculated cases, and 13 malignant non-spiculated cases, are analyzed. The initial spiculation detection method found 100% of the spiculated lesions with no false positive detections, and has area under the receiver operating characteristics (ROC) curve A(Z)=1.0. The values using ALSSM (periphery segmentation only) are A(Z)=0.9687 and 0.9708 for two investigated feature sets, and increases to A(Z)=0.986 2 using SSLS (spiculation segmentation). The best classification results are 93% overall accuracy (OA), with three false positives (FP) and one false negative (FN) using a 1-NN (Nearest Neighbor) or 2-NN classifier, and 92% OA with three FP and two FN using a maximum likelihood classifier.

摘要

本文介绍了一种用于在数字乳腺钼靶片中检测和分割毛刺的自动乳腺钼靶计算机辅助诊断(CAD)系统,称为带水平集的毛刺分割(SSLS)。SSLS首先对可疑肿块周边进行分割,这是作者使用先前开发的自适应水平集分割算法(ALSSM)完成的。然后使用从狄克逊和泰勒线性算子(DTLO)导出的特征对乳腺钼靶片进行分析,DTLO是一种线性结构增强方法。提取并优化特征,然后将可疑肿块分类为良性或恶性。为了评估该系统的有效性,分析了来自数字乳腺钼靶筛查数据库(DDSM)的60张困难乳腺钼靶图像,其中包括30例良性无毛刺病例、17例恶性有毛刺病例和13例恶性无毛刺病例。最初的毛刺检测方法发现了所有有毛刺病变,无假阳性检测,其在接收器操作特征(ROC)曲线下的面积A(Z)=1.0。对于两个研究的特征集,使用ALSSM(仅周边分割)的值为A(Z)=0.9687和0.9708,而使用SSLS(毛刺分割)时增加到A(Z)=0.9862。使用1-NN(最近邻)或2-NN分类器时,最佳分类结果是总体准确率(OA)为93%,有三个假阳性(FP)和一个假阴性(FN);使用最大似然分类器时,OA为92%,有三个FP和两个FN。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验