Department of Systems and Computer Engineering, Carleton University, ON, Canada.
Med Image Anal. 2012 Aug;16(6):1167-86. doi: 10.1016/j.media.2012.05.005. Epub 2012 May 24.
We present a computer-aided approach to segmenting suspicious lesions in digital mammograms, based on a novel maximum likelihood active contour model using level sets (MLACMLS). The algorithm estimates the segmentation contour that best separates the lesion from the background using the Gamma distribution to model the intensity of both regions (foreground and background). The Gamma distribution parameters are estimated by the algorithm. We evaluate the performance of MLACMLS on real mammographic images. Our results are compared to those of two leading related methods: The adaptive level set-based segmentation method (ALSSM) and the spiculation segmentation using level sets (SSLS) approach, and show higher segmentation accuracy (MLACMLS: 86.85% vs. ALSSM: 74.32% and SSLS: 57.11%). Moreover, our results are qualitatively compared with those of the Active Contour Without Edge (ACWOE) and show a better performance. Further, the suitability of using ML as the objective function as opposed to the KL divergence and to the energy functional of the ACWOE is also demonstrated. Our algorithm is also shown to be robust to the selection of a required single seed point.
我们提出了一种基于新的最大似然主动轮廓模型(使用水平集)(MLACMLS)的计算机辅助方法,用于分割数字乳腺 X 光片中的可疑病变。该算法使用伽马分布来估计最佳分割轮廓,以将病变与背景分开(前景和背景)。伽马分布参数由算法估计。我们在真实的乳腺图像上评估 MLACMLS 的性能。我们的结果与两种领先的相关方法进行了比较:基于自适应水平集的分割方法(ALSSM)和使用水平集的毛刺分割(SSLS)方法,结果表明更高的分割精度(MLACMLS:86.85%比 ALSSM:74.32%和 SSLS:57.11%)。此外,我们的结果与主动轮廓无边缘(ACWOE)的结果进行了定性比较,显示出更好的性能。此外,还证明了使用 ML 作为目标函数而不是 KL 散度和 ACWOE 的能量函数的适用性。我们的算法也被证明对所需的单个种子点的选择具有鲁棒性。