Bailleul Jonathan, Ruan Su, Constans Jean-Marc
GREYC, Centre National de la Recherche Scientifique, UMR 6072, ENSICAEN, 14050 Caen Cedex, France.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5255-8. doi: 10.1109/IEMBS.2007.4353527.
We propose a segmentation method that automatically delineates structures contours from 3D brain MRI images using a statistical shape model. We automatically build this 3D Point Distribution Model (PDM) in applying a Minimum Description Length (MDL) annotation to a training set of shapes, obtained by registration of a 3D anatomical atlas over a set of patients brain MRIs. Delineation of any structure from a new MRI image is first initialized by such registration. Then, delineation is achieved in iterating two consecutive steps until the 3D contour reaches idempotence. The first step consists in applying an intensity model to the latest shape position so as to formulate a closer guess: our model requires far less priors than standard model in aiming at direct interpretation rather than compliance to learned contexts. The second step consists in enforcing shape constraints onto previous guess so as to remove all bias induced by artifacts or low contrast on current MRI. For this, we infer the closest shape instance from the PDM shape space using a new estimation method which accuracy is significantly improved by a huge increase in the model resolution and by a depth-search in the parameter space. The delineation results we obtained are very encouraging and show the interest of the proposed framework.
我们提出了一种分割方法,该方法使用统计形状模型从3D脑MRI图像中自动描绘结构轮廓。我们通过将最小描述长度(MDL)标注应用于一组形状的训练集来自动构建这个3D点分布模型(PDM),该训练集是通过将3D解剖图谱配准到一组患者的脑MRI上获得的。从新的MRI图像中描绘任何结构首先通过这种配准进行初始化。然后,通过迭代两个连续步骤来实现描绘,直到3D轮廓达到幂等性。第一步是将强度模型应用于最新的形状位置,以便做出更接近的猜测:我们的模型在旨在直接解释而非遵循学习到的上下文方面,比标准模型需要的先验信息少得多。第二步是对先前的猜测施加形状约束,以消除当前MRI上由伪影或低对比度引起的所有偏差。为此,我们使用一种新的估计方法从PDM形状空间中推断出最接近的形状实例,该方法的准确性通过模型分辨率的大幅提高和参数空间中的深度搜索而得到显著改善。我们获得的描绘结果非常令人鼓舞,并显示了所提出框架的价值。