基于图谱的三维脑结构分割,采用竞争水平集和模糊控制
Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control.
作者信息
Ciofolo Cybèle, Barillot Christian
机构信息
Unit/Project VisAGeS U746, CNRS/IRISA/INSERM/INRIA, Campus universitaire de Beaulieu, Rennes, France.
出版信息
Med Image Anal. 2009 Jun;13(3):456-70. doi: 10.1016/j.media.2009.02.008. Epub 2009 Mar 10.
We propose a novel approach for the simultaneous segmentation of multiple structures with competitive level sets driven by fuzzy control. To this end, several contours evolve simultaneously toward previously defined anatomical targets. A fuzzy decision system combines the a priori knowledge provided by an anatomical atlas with the intensity distribution of the image and the relative position of the contours. This combination automatically determines the directional term of the evolution equation of each level set. This leads to a local expansion or contraction of the contours, in order to match the boundaries of their respective targets. Two applications are presented: the segmentation of the brain hemispheres and the cerebellum, and the segmentation of deep internal structures. Experimental results on real magnetic resonance (MR) images are presented, quantitatively assessed and discussed.
我们提出了一种新颖的方法,用于在模糊控制驱动的竞争水平集下同时分割多个结构。为此,多个轮廓同时朝着先前定义的解剖目标演化。一个模糊决策系统将解剖图谱提供的先验知识与图像的强度分布以及轮廓的相对位置相结合。这种结合自动确定每个水平集演化方程的方向项。这导致轮廓的局部扩张或收缩,以匹配其各自目标的边界。给出了两个应用:脑半球和小脑的分割,以及深部内部结构的分割。展示了在真实磁共振(MR)图像上的实验结果,并进行了定量评估和讨论。