Suppr超能文献

麻疹病毒血凝素的晶体结构为有效疫苗提供了见解。

Crystal structure of measles virus hemagglutinin provides insight into effective vaccines.

作者信息

Hashiguchi Takao, Kajikawa Mizuho, Maita Nobuo, Takeda Makoto, Kuroki Kimiko, Sasaki Kaori, Kohda Daisuke, Yanagi Yusuke, Maenaka Katsumi

机构信息

Department of Virology, Faculty of Medicine, and Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.

出版信息

Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19535-40. doi: 10.1073/pnas.0707830104. Epub 2007 Nov 14.

Abstract

Measles still remains a major cause of childhood morbidity and mortality worldwide. Measles virus (MV) vaccines are highly successful, but the mechanism underlying their efficacy has been unclear. Here we report the crystal structure of the MV attachment protein, hemagglutinin, responsible for MV entry. The receptor-binding head domain exhibits a cubic-shaped beta-propeller structure and forms a homodimer. N-linked sugars appear to mask the broad regions and cause the two molecules forming the dimer to tilt oppositely toward the horizontal plane. Accordingly, residues of the putative receptor-binding site, highly conserved among MV strains, are strategically positioned in the unshielded area of the protein. These conserved residues also serve as epitopes for neutralizing antibodies, ensuring the serological monotype, a basis for effective MV vaccines. Our findings suggest that sugar moieties in the MV hemagglutinin critically modulate virus-receptor interaction as well as antiviral antibody responses, differently from sugars of the HIV gp120, which allow for immune evasion.

摘要

麻疹仍然是全球儿童发病和死亡的主要原因。麻疹病毒(MV)疫苗非常成功,但其有效性背后的机制尚不清楚。在此,我们报告了负责MV进入的附着蛋白血凝素的晶体结构。受体结合头部结构域呈现立方体形的β-螺旋桨结构并形成同型二聚体。N-连接糖似乎掩盖了广泛区域,并导致形成二聚体的两个分子向水平面相反方向倾斜。因此,在MV毒株中高度保守的假定受体结合位点的残基,战略性地定位在蛋白质的未屏蔽区域。这些保守残基还作为中和抗体的表位,确保血清学单一型,这是有效MV疫苗的基础。我们的研究结果表明,MV血凝素中的糖部分关键地调节病毒-受体相互作用以及抗病毒抗体反应,这与HIV gp120的糖不同,后者允许免疫逃逸。

相似文献

1
Crystal structure of measles virus hemagglutinin provides insight into effective vaccines.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19535-40. doi: 10.1073/pnas.0707830104. Epub 2007 Nov 14.
2
Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM.
Nat Struct Mol Biol. 2011 Feb;18(2):135-41. doi: 10.1038/nsmb.1969. Epub 2011 Jan 9.
4
Measles virus receptors.
Curr Top Microbiol Immunol. 2009;329:13-30. doi: 10.1007/978-3-540-70523-9_2.
5
Structure of the measles virus hemagglutinin bound to the CD46 receptor.
Nat Struct Mol Biol. 2010 Jan;17(1):124-9. doi: 10.1038/nsmb.1726. Epub 2009 Dec 13.
6
Mutations in the putative dimer-dimer interfaces of the measles virus hemagglutinin head domain affect membrane fusion triggering.
J Biol Chem. 2013 Mar 22;288(12):8085-8091. doi: 10.1074/jbc.M112.427609. Epub 2013 Jan 29.
7
Distinct kinetics for binding of the CD46 and SLAM receptors to overlapping sites in the measles virus hemagglutinin protein.
J Biol Chem. 2002 Aug 30;277(35):32294-301. doi: 10.1074/jbc.M202973200. Epub 2002 Jun 13.
8
Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4.
Nat Struct Mol Biol. 2013 Jan;20(1):67-72. doi: 10.1038/nsmb.2432. Epub 2012 Dec 2.
9
Structure of the measles virus H glycoprotein sheds light on an efficient vaccine.
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20639-40. doi: 10.1073/pnas.0709995105. Epub 2007 Dec 17.

引用本文的文献

2
Targeted therapeutic strategies for Nectin-4 in breast cancer: Recent advances and future prospects.
Breast. 2025 Feb;79:103838. doi: 10.1016/j.breast.2024.103838. Epub 2024 Nov 14.
4
Structural and functional characterization of virus coded hemagglutinin protein using various approaches.
Front Microbiol. 2024 Jun 20;15:1427606. doi: 10.3389/fmicb.2024.1427606. eCollection 2024.
5
Unveiling the affinity-stability relationship in anti-measles virus antibodies: a computational approach for hotspots prediction.
Front Mol Biosci. 2024 Mar 1;10:1302737. doi: 10.3389/fmolb.2023.1302737. eCollection 2023.
6
COVID-19 vaccines and beyond.
Cell Mol Immunol. 2024 Mar;21(3):207-209. doi: 10.1038/s41423-024-01132-2. Epub 2024 Jan 26.
8
Biophysical characterization of the cetacean morbillivirus haemagglutinin glycoprotein.
Virus Res. 2023 Oct 15;336:199231. doi: 10.1016/j.virusres.2023.199231. Epub 2023 Sep 28.
10
Metagenomics-enabled reverse-genetics assembly and characterization of myotis bat morbillivirus.
Nat Microbiol. 2023 Jun;8(6):1108-1122. doi: 10.1038/s41564-023-01380-4. Epub 2023 May 4.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Exploiting the defensive sugars of HIV-1 for drug and vaccine design.
Nature. 2007 Apr 26;446(7139):1038-45. doi: 10.1038/nature05818.
5
Eukaryotic expression: developments for structural proteomics.
Acta Crystallogr D Biol Crystallogr. 2006 Oct;62(Pt 10):1114-24. doi: 10.1107/S0907444906029805. Epub 2006 Sep 19.
6
Measles virus: cellular receptors, tropism and pathogenesis.
J Gen Virol. 2006 Oct;87(Pt 10):2767-2779. doi: 10.1099/vir.0.82221-0.
7
Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity.
J Virol. 2005 Nov;79(22):14346-54. doi: 10.1128/JVI.79.22.14346-14354.2005.
10
WHO estimates of the causes of death in children.
Lancet. 2005;365(9465):1147-52. doi: 10.1016/S0140-6736(05)71877-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验