Rojo Ana I, Sagarra María Rosa de, Cuadrado Antonio
Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Madrid, Spain.
J Neurochem. 2008 Apr;105(1):192-202. doi: 10.1111/j.1471-4159.2007.05124.x. Epub 2007 Nov 13.
Oxidant injury activates the neuroprotective pathway represented by phosphatidylinositol 3 kinase (PI3K) and Akt. However, the final outcome of oxidant exposure is often associated with neuronal death. This study was aimed to identify the molecular mechanism responsible for loss of tolerance to an oxidative environment. In N2A neuroblasts, serum and H2O2 exhibited different kinetics of regulation for the Ser/Thr kinases Akt and glycogen synthase kinase 3beta (GSK-3beta) and for the transcription factor Nrf2, which governs redox homeostasis. Thus, H2O2 rapidly activated Akt, inhibited GSK-3beta, and directed the transcription factor Nrf2 to the nucleus, but after 4 h Akt was inactive, GSK-3beta was active and Nrf2 was more cytosolic than nuclear. Inhibition of the PI3K/Akt pathway by LY294002, impeded the short-term effect of H2O2 on nuclear translocation of Nrf2. GSK-3beta activation (inhibiting PI3K/Akt) or direct GSK-3beta inhibition in cerebellar granule neurons resulted in respective nuclear exclusion and nuclear accumulation of Nrf2. Moreover, in these neurons, nuclear accumulation of Nrf2 correlated with increased heme oxygenase-1 expression. Over-expression of the kinase active GSK-3beta (Delta9) mutant, induced Nrf2 cytoplasmic localization and inhibited Nrf2 transcriptional activity towards an antioxidant-response-element luciferase reporter. Moreover, GSK-3beta (Delta9) sensitized N2A neuroblasts to H2O2-induced oxidative stress and cell death. This study identifies GSK-3beta, a kinase known to participate in neurodegeneration, as a fundamental element in the down-regulation of the antioxidant cell defense elicited by Nrf2 after oxidant injury and provides a mechanism to explain the loss of oxidant tolerance that happens under persistent oxidant exposure such as those found in several neuropathologies.
氧化损伤激活了以磷脂酰肌醇3激酶(PI3K)和Akt为代表的神经保护通路。然而,暴露于氧化剂的最终结果通常与神经元死亡有关。本研究旨在确定导致对氧化环境耐受性丧失的分子机制。在N2A神经母细胞中,血清和过氧化氢对丝氨酸/苏氨酸激酶Akt和糖原合酶激酶3β(GSK-3β)以及对控制氧化还原稳态的转录因子Nrf2表现出不同的调节动力学。因此,过氧化氢迅速激活Akt,抑制GSK-3β,并将转录因子Nrf2导向细胞核,但4小时后Akt失活,GSK-3β激活,且Nrf2在细胞质中的含量比在细胞核中更多。LY294002对PI3K/Akt通路的抑制,阻碍了过氧化氢对Nrf2核转位的短期作用。在小脑颗粒神经元中,GSK-3β激活(抑制PI3K/Akt)或直接抑制GSK-3β分别导致Nrf2的核排除和核积累。此外,在这些神经元中,Nrf2的核积累与血红素加氧酶-1表达增加相关。激酶活性GSK-3β(Delta9)突变体的过表达诱导Nrf2定位于细胞质,并抑制Nrf2对抗氧化反应元件荧光素酶报告基因的转录活性。此外,GSK-3β(Delta9)使N2A神经母细胞对过氧化氢诱导的氧化应激和细胞死亡敏感。本研究确定了已知参与神经退行性变的激酶GSK-3β,是氧化损伤后Nrf2引发的抗氧化细胞防御下调的基本要素,并提供了一种机制来解释在持续氧化剂暴露(如在几种神经病理学中发现的情况)下发生的氧化剂耐受性丧失。