Cao Yi, Li Hongbin
Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada.
J Mol Biol. 2008 Jan 4;375(1):316-24. doi: 10.1016/j.jmb.2007.10.024. Epub 2007 Oct 15.
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the "mechanical chevron plot" as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions.
我们展示了第一项关于化学变性剂对小蛋白GB1(来自链球菌的G蛋白的B1免疫球蛋白结合结构域)机械折叠/去折叠动力学影响的单分子原子力显微镜研究。随着化学变性剂氯化胍(GdmCl)浓度的增加,我们观察到GB1的机械稳定性系统性降低,这表明化学变性剂对蛋白质机械稳定性具有软化作用。这种机械软化效应源于折叠态与去折叠过渡态之间自由能垒的降低,其随变性剂浓度呈线性下降。然而,化学变性剂不会改变机械去折叠途径,也不会改变机械去折叠过渡态的位置。我们还发现在机械折叠实验中,GdmCl会减慢GB1的折叠速率常数。通过结合GB1在GdmCl溶液中的机械折叠/去折叠动力学,我们开发了“机械V形图”作为一种通用工具,以定量方式理解化学变性剂如何影响机械折叠/去折叠动力学和自由能图。这项研究展示了将化学变性与单分子原子力显微镜技术相结合以揭示蛋白质折叠/去折叠反应能量景观中宝贵信息的巨大潜力。