Suppr超能文献

一个关于 motif 发现网络工具的调查,用于检测 ChIP-Seq 数据中的结合位点 motif。

A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

机构信息

Department of Computer Science and Engineering, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, USA.

出版信息

Biol Direct. 2014 Feb 20;9:4. doi: 10.1186/1745-6150-9-4.

Abstract

ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data.

摘要

ChIP-Seq(染色质免疫沉淀测序)为发现基序提供了优势,因为 ChIP-Seq 实验将基序发现缩小到结合位点位置。最近的基序发现工具通过提供用户友好的 Web 界面来方便基序检测。在这项工作中,我们回顾了 9 个能够在 ChIP-Seq 数据中检测结合位点基序的基序发现 Web 工具。我们表明,每个基序发现 Web 工具都有其自身的优势,用于检测其他工具可能无法发现的基序。我们建议用户使用多种基序发现 Web 工具,这些工具使用不同的算法来获得显著的基序、重叠相似的基序和非重叠的基序。最后,我们为基序发现 Web 工具的未来发展提供了建议,以便更好地帮助研究人员在 ChIP-Seq 数据中发现基序。

相似文献

1
2
MEME-ChIP: motif analysis of large DNA datasets.
Bioinformatics. 2011 Jun 15;27(12):1696-7. doi: 10.1093/bioinformatics/btr189. Epub 2011 Apr 12.
4
A Fast Cluster Motif Finding Algorithm for ChIP-Seq Data Sets.
Biomed Res Int. 2015;2015:218068. doi: 10.1155/2015/218068. Epub 2015 Jul 5.
5
RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes.
Methods Mol Biol. 2016;1482:297-322. doi: 10.1007/978-1-4939-6396-6_19.
6
An algorithmic perspective of de novo cis-regulatory motif finding based on ChIP-seq data.
Brief Bioinform. 2018 Sep 28;19(5):1069-1081. doi: 10.1093/bib/bbx026.
7
Web-MCOT Server for Motif Co-Occurrence Search in ChIP-Seq Data.
Int J Mol Sci. 2022 Aug 11;23(16):8981. doi: 10.3390/ijms23168981.
8
Differential motif enrichment analysis of paired ChIP-seq experiments.
BMC Genomics. 2014 Sep 2;15(1):752. doi: 10.1186/1471-2164-15-752.
9
CSA: a web service for the complete process of ChIP-Seq analysis.
BMC Bioinformatics. 2019 Dec 24;20(Suppl 15):515. doi: 10.1186/s12859-019-3090-0.
10
Motif-based analysis of large nucleotide data sets using MEME-ChIP.
Nat Protoc. 2014;9(6):1428-50. doi: 10.1038/nprot.2014.083. Epub 2014 May 22.

引用本文的文献

1
The evaluation of transcription factor binding site prediction tools in human and Arabidopsis genomes.
BMC Bioinformatics. 2024 Dec 2;25(1):371. doi: 10.1186/s12859-024-05995-0.
2
Genomic background sequences systematically outperform synthetic ones in de novo motif discovery for ChIP-seq data.
NAR Genom Bioinform. 2024 Jul 27;6(3):lqae090. doi: 10.1093/nargab/lqae090. eCollection 2024 Sep.
4
Guidelines on the performance evaluation of motif recognition methods in bioinformatics.
Front Genet. 2023 Feb 7;14:1135320. doi: 10.3389/fgene.2023.1135320. eCollection 2023.
5
A systematic study of HIF1A cofactors in hypoxic cancer cells.
Sci Rep. 2022 Nov 8;12(1):18962. doi: 10.1038/s41598-022-23060-9.
6
and periodontitis: a case-control study and identification of five novel redondoviruses from periodontal tissues.
Virus Evol. 2021 Apr 12;7(1):veab033. doi: 10.1093/ve/veab033. eCollection 2021 Jan.
7
Improved linking of motifs to their TFs using domain information.
Bioinformatics. 2020 Mar 1;36(6):1655-1662. doi: 10.1093/bioinformatics/btz855.
9
DNA-protein interaction: identification, prediction and data analysis.
Mol Biol Rep. 2019 Jun;46(3):3571-3596. doi: 10.1007/s11033-019-04763-1. Epub 2019 Mar 26.
10
Finding de novo methylated DNA motifs.
Bioinformatics. 2019 Sep 15;35(18):3287-3293. doi: 10.1093/bioinformatics/btz079.

本文引用的文献

1
PscanChIP: Finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W535-43. doi: 10.1093/nar/gkt448. Epub 2013 Jun 7.
2
NEXT-peak: a normal-exponential two-peak model for peak-calling in ChIP-seq data.
BMC Genomics. 2013 May 25;14:349. doi: 10.1186/1471-2164-14-349.
4
BroadPeak: a novel algorithm for identifying broad peaks in diffuse ChIP-seq datasets.
Bioinformatics. 2013 Feb 15;29(4):492-3. doi: 10.1093/bioinformatics/bts722. Epub 2013 Jan 7.
5
Combining multiple ChIP-seq peak detection systems using combinatorial fusion.
BMC Genomics. 2012;13 Suppl 8(Suppl 8):S12. doi: 10.1186/1471-2164-13-S8-S12. Epub 2012 Dec 17.
6
The UCSC Genome Browser database: extensions and updates 2013.
Nucleic Acids Res. 2013 Jan;41(Database issue):D64-9. doi: 10.1093/nar/gks1048. Epub 2012 Nov 15.
7
High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.
PLoS Comput Biol. 2012;8(8):e1002638. doi: 10.1371/journal.pcbi.1002638. Epub 2012 Aug 9.
8
Pinpointing transcription factor binding sites from ChIP-seq data with SeqSite.
BMC Syst Biol. 2011;5 Suppl 2(Suppl 2):S3. doi: 10.1186/1752-0509-5-S2-S3. Epub 2011 Dec 14.
9
A map of the cis-regulatory sequences in the mouse genome.
Nature. 2012 Aug 2;488(7409):116-20. doi: 10.1038/nature11243.
10
Inferring direct DNA binding from ChIP-seq.
Nucleic Acids Res. 2012 Sep 1;40(17):e128. doi: 10.1093/nar/gks433. Epub 2012 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验