Suppr超能文献

Accumulation of silver(I) ion and diamine silver complex by Aeromonas SH10 biomass.

作者信息

Zhang Haoran, Li Qingbiao, Wang Huixuan, Sun Daohua, Lu Yinghua, He Ning

机构信息

Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, People's Republic of China.

出版信息

Appl Biochem Biotechnol. 2007 Oct;143(1):54-62. doi: 10.1007/s12010-007-8006-1.

Abstract

The biomass of Aeromonas SH10 was proven to strongly absorb Ag+ and [Ag(NH3)2]+. The maximum uptake of [Ag(NH3)2]+ was 0.23 g(Ag) g(-1)(cell dry weight), higher than that of Ag+. Fourier transform infrared spectroscopy spectra analysis indicated that some organic groups, such as amide and ionized carboxyl in the cell wall, played an important role in the process of biosorption. After SH10 cells were suspended in the aqueous solution of [Ag(NH3)2]+ under 60 degrees C for more than 12 h, [Ag(NH3)2]+ was reduced to Ag(0), which was demonstrated by the characteristic absorbance peak of elemental silver nanoparticle in UV-VIS spectrum. Scanning electron microscopy and transmission electron microscopy observation showed that nanoparticles were formed on the cell wall after reduction. These particles were then confirmed to be elemental silver crystal by energy dispersive X-ray spectroscopy, X-ray diffraction, and UV-VIS analysis. This study demonstrated the potential use of Aeromonas SH10 in silver-containing wastewater treatment due to its high silver biosorption ability, and the potential application of bioreduction of [Ag(NH3)2]+ in nanoparticle preparation technology.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验