Suppr超能文献

估计中性群落的参数:从单个大样本到多个小样本。

Estimating parameters of neutral communities: from one single large to several small samples.

作者信息

Munoz François, Couteron Pierre, Ramesh B R, Etienne Rampal S

机构信息

French Institute of Pondicherry, 11 Saint Louis Street, Pondicherry 605001, India.

出版信息

Ecology. 2007 Oct;88(10):2482-8. doi: 10.1890/07-0049.1.

Abstract

The neutral theory of S. P. Hubbell postulates a two-scale hierarchical framework consisting of a metacommunity following the speciation-drift equilibrium characterized by the "biodiversity number" theta, and local communities following the migration-drift equilibrium characterized by the "migration rate" m (or the "fundamental dispersal number" I). While Etienne's sampling formula allows simultaneous estimation of theta and m from a single sample of a local community, its applicability to a network of (rather small) samples is questionable. We define here an alternative two-stage approach estimating theta from an adequate subset of the individuals sampled in the field (using Ewens' sampling formula) and m from community samples (using Etienne's sampling formula). We compare its results with the simultaneous estimation of theta and m (one-stage estimation), for simulated neutral samples and for 50 1-ha plots of evergreen forest in South India. The one-stage approach exhibits problems of bias and of poor differentiability between high-theta, low-m and low-theta, high-m solution domains. Conversely, the two-stage approach yielded reasonable estimates and is to be preferred when several small, scattered plots are available instead of a single large one.

摘要

S.P. 哈贝尔的中性理论假定了一个双尺度层次框架,该框架由一个遵循以“生物多样性数量”θ为特征的物种形成 - 漂变平衡的集合群落,以及遵循以“迁移率”m(或“基本扩散数”I)为特征的迁移 - 漂变平衡的局部群落组成。虽然艾蒂安的抽样公式允许从局部群落的单个样本中同时估计θ和m,但其对(相当小的)样本网络的适用性值得怀疑。我们在此定义一种替代的两阶段方法,即从实地采样个体的适当子集中估计θ(使用尤恩斯抽样公式),并从群落样本中估计m(使用艾蒂安抽样公式)。我们将其结果与对θ和m的同时估计(单阶段估计)进行比较,用于模拟中性样本以及印度南部50个1公顷常绿森林样地。单阶段方法存在偏差问题,并且在高θ、低m和低θ、高m解域之间的可区分性较差。相反,两阶段方法产生了合理的估计,并且当有几个小的、分散的样地而非单个大样地时更可取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验