Feller C, Bernoux M
Institut de Recherche pour le Développement (IRD), UR SeqBio, ENSAM, 2 Place Viala, 34060 Montpellier cedex 1, France.
Waste Manag. 2008;28(4):734-40. doi: 10.1016/j.wasman.2007.09.022. Epub 2007 Nov 26.
This paper serves two purposes: it provides a summarized scientific history of carbon sequestration in relation to the soil-plant system and gives a commentary on organic wastes and SOC sequestration. The concept of soil organic carbon (SOC) sequestration has its roots in: (i) the experimental work of Lundegårdh, particularly his in situ measurements of CO2 fluxes at the soil-plant interface (1924, 1927, 1930); (ii) the first estimates of SOC stocks at the global level made by Waksman [Waksman, S.A., 1938. Humus. Origin, Chemical Composition and Importance in Nature, second ed. revised. Williams and Wilkins, Baltimore, p. 526] and Rubey [Rubey, W.W., 1951. Geologic history of sea water. Bulletin of the Geological Society of America 62, 1111-1148]; (iii) the need for models dealing with soil organic matter (SOM) or SOC dynamics beginning with a conceptual SOM model by De Saussure (1780-1796) followed by the mathematical models of Jenny [Jenny, H., 1941. Factors of Soil Formation: a System of Quantitative Pedology. Dover Publications, New York, p. 288], Hénin and Dupuis [Hénin, S., Dupuis, M., 1945. Essai de bilan de la matière organique. Annales d'Agronomie 15, 17-29] and more recently the RothC [Jenkinson, D.S., Rayner, J.H., 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science 123 (5), 298-305] and Century [Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of America Journal 51 (5), 1173-1179] models. The establishment of a soil C sequestration balance is not straightforward and depends greatly on the origin and the composition of organic matter that is to be returned to the system. Wastes, which are important sources of organic carbon for soils, are taken as an example. For these organic materials the following factors have to be considered: the presence or absence of fossil C, the potential of direct and indirect emissions of non-CO2 greenhouse gases (CH4 and N2O) following application and the agro-system which is being used as a comparative reference.
它提供了与土壤 - 植物系统相关的碳固存科学简史,并对有机废物和土壤有机碳固存进行了评论。土壤有机碳(SOC)固存的概念源于:(i)伦德加德的实验工作,特别是他对土壤 - 植物界面二氧化碳通量的原位测量(1924年、1927年、1930年);(ii)瓦克斯曼[瓦克斯曼,S.A.,1938年。腐殖质。起源、化学成分及其在自然界中的重要性,第二版修订。威廉姆斯和威尔金斯出版社,巴尔的摩,第526页]和鲁比[鲁比,W.W.,1951年。海水的地质历史。美国地质学会通报62,1111 - 1148]对全球层面SOC储量的首次估计;(iii)从德索绪尔(1780 - 1796)的概念性土壤有机质模型开始,随后是珍妮[珍妮,H.,1941年。土壤形成因素:定量土壤学系统。多佛出版社,纽约,第288页]、埃南和迪皮伊[埃南,S.,迪皮伊,M.,1945年。有机物质平衡试验。农业年鉴15,17 - 29]的数学模型,以及最近的罗斯C模型[詹金森,D.S.,雷纳,J.H.,1977年。罗瑟拉姆斯特德一些经典实验中土壤有机质的周转。土壤科学123(5),298 - 305]和世纪模型[帕顿,W.J.,希梅尔,D.S.,科尔,C.V.,大岛,D.S.,1987年。大平原草原土壤有机质水平控制因素分析。美国土壤科学协会杂志51(5),1173 - 1179]对处理土壤有机质(SOM)或SOC动态模型的需求。建立土壤碳固存平衡并非易事,很大程度上取决于返回系统的有机物质的来源和组成。以作为土壤有机碳重要来源的废物为例。对于这些有机材料,必须考虑以下因素:化石碳是否存在、施用后非二氧化碳温室气体(CH4和N2O)直接和间接排放的潜力以及用作比较参考的农业系统。