Suppr超能文献

天然和交联I型胶原纤维的力学性能。

Mechanical properties of native and cross-linked type I collagen fibrils.

作者信息

Yang Lanti, van der Werf Kees O, Fitié Carel F C, Bennink Martin L, Dijkstra Pieter J, Feijen Jan

机构信息

Polymer Chemistry and Biomaterials, Faculty of Science and Technology and Institute for Biomedical Technology, University of Twente, Enschede, The Netherlands.

出版信息

Biophys J. 2008 Mar 15;94(6):2204-11. doi: 10.1529/biophysj.107.111013. Epub 2007 Nov 21.

Abstract

Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 +/- 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07-0.17 GPa and 2.9 +/- 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 +/- 7 MPa at ambient conditions and to 3.4 +/- 0.2 MPa in phosphate-buffered saline.

摘要

使用原子力显微镜进行了微机械弯曲实验,以研究天然和碳二亚胺交联的单根胶原纤维的力学性能。从牛跟腱中分离出的不溶性I型胶原悬浮液中获得的纤维沉积在含有微通道的玻璃基板上。沿着胶原纤维在多个位置记录的力-位移曲线用于评估弯曲模量。通过将在环境条件下记录的力-位移曲线的斜率拟合到描述杆弯曲的模型中,确定了弯曲模量范围为1.0 GPa至3.9 GPa。根据各向异性材料模型,在环境条件下,纤维的剪切模量计算为33±2 MPa。当纤维浸入磷酸盐缓冲盐水中时,它们的弯曲模量和剪切模量分别降至0.07 - 0.17 GPa和2.9±0.3 MPa。与杨氏模量相比,剪切模量低两个数量级,证实了胶原单纤维的力学各向异性。用水溶性碳二亚胺交联胶原纤维不会显著影响弯曲模量。然而,这些纤维在环境条件下的剪切模量变为74±7MPa,在磷酸盐缓冲盐水中变为3,4±0.2 MPa。

相似文献

1
Mechanical properties of native and cross-linked type I collagen fibrils.
Biophys J. 2008 Mar 15;94(6):2204-11. doi: 10.1529/biophysj.107.111013. Epub 2007 Nov 21.
2
Micromechanical bending of single collagen fibrils using atomic force microscopy.
J Biomed Mater Res A. 2007 Jul;82(1):160-8. doi: 10.1002/jbm.a.31127.
3
Micromechanical testing of individual collagen fibrils.
Macromol Biosci. 2006 Sep 15;6(9):697-702. doi: 10.1002/mabi.200600063.
4
Mechanical properties of single electrospun collagen type I fibers.
Biomaterials. 2008 Mar;29(8):955-62. doi: 10.1016/j.biomaterials.2007.10.058.
5
Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils.
J Mech Behav Biomed Mater. 2012 Feb;6:148-58. doi: 10.1016/j.jmbbm.2011.11.008. Epub 2011 Nov 25.
6
Structural investigations on native collagen type I fibrils using AFM.
Biochem Biophys Res Commun. 2007 Mar 2;354(1):27-32. doi: 10.1016/j.bbrc.2006.12.114. Epub 2006 Dec 22.
7
Effects of photochemical riboflavin-mediated crosslinks on the physical properties of collagen constructs and fibrils.
J Mater Sci Mater Med. 2014 Jan;25(1):11-21. doi: 10.1007/s10856-013-5038-7. Epub 2013 Sep 5.
8
Mechanical properties of collagen fibrils.
Biophys J. 2007 Aug 15;93(4):1255-63. doi: 10.1529/biophysj.106.103192. Epub 2007 May 25.
9
Collagen fibrils: nanoscale ropes.
Biophys J. 2007 Jan 1;92(1):70-5. doi: 10.1529/biophysj.106.085704. Epub 2006 Oct 6.
10
Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril.
J Appl Physiol (1985). 2012 Feb;112(3):419-26. doi: 10.1152/japplphysiol.01172.2011. Epub 2011 Nov 23.

引用本文的文献

1
Structure-property relationships in fibrous meniscal tissue through image-based augmentation.
Philos Trans A Math Phys Eng Sci. 2025 Mar 13;383(2292):20240225. doi: 10.1098/rsta.2024.0225.
2
Altering the mechanical properties of self-assembled filaments through engineering of EspA bacterial protein.
Mater Today Bio. 2024 Dec 18;30:101414. doi: 10.1016/j.mtbio.2024.101414. eCollection 2025 Feb.
5
Versatile Self-Assembly of Triblock Peptides into Stable Collagen Mimetic Heterotrimers.
Int J Mol Sci. 2024 Jun 14;25(12):6550. doi: 10.3390/ijms25126550.
6
Continuous protein-density gradients: A new approach to correlate physical cues with cell response.
PNAS Nexus. 2024 May 21;3(6):pgae202. doi: 10.1093/pnasnexus/pgae202. eCollection 2024 Jun.
7
Hydroxyapatite-filled osteoinductive and piezoelectric nanofibers for bone tissue engineering.
Sci Technol Adv Mater. 2023 Aug 24;24(1):2242242. doi: 10.1080/14686996.2023.2242242. eCollection 2023.
8
Hybrid cellular Potts and bead-spring modeling of cells in fibrous extracellular matrix.
Biophys J. 2023 Jul 11;122(13):2609-2622. doi: 10.1016/j.bpj.2023.05.013. Epub 2023 May 13.
9
Collagen Derived from Fish Industry Waste: Progresses and Challenges.
Polymers (Basel). 2023 Jan 20;15(3):544. doi: 10.3390/polym15030544.
10
Preparation of collagen fibrils from mineralized tissues and evaluation by atomic force microscopy.
J Mech Behav Biomed Mater. 2023 Feb;138:105624. doi: 10.1016/j.jmbbm.2022.105624. Epub 2022 Dec 16.

本文引用的文献

1
Young's modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques.
Nanotechnology. 2006 Jul 28;17(14):3591-7. doi: 10.1088/0957-4484/17/14/039. Epub 2006 Jun 26.
2
Quantification of carboxyl groups in carbodiimide cross-linked collagen sponges.
J Biomed Mater Res A. 2007 Dec 15;83(4):1176-1183. doi: 10.1002/jbm.a.31398.
3
Mechanical properties of collagen fibrils.
Biophys J. 2007 Aug 15;93(4):1255-63. doi: 10.1529/biophysj.106.103192. Epub 2007 May 25.
4
Micromechanical bending of single collagen fibrils using atomic force microscopy.
J Biomed Mater Res A. 2007 Jul;82(1):160-8. doi: 10.1002/jbm.a.31127.
5
Characterization of the nanoscale properties of individual amyloid fibrils.
Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15806-11. doi: 10.1073/pnas.0604035103. Epub 2006 Oct 12.
7
Micromechanical testing of individual collagen fibrils.
Macromol Biosci. 2006 Sep 15;6(9):697-702. doi: 10.1002/mabi.200600063.
8
Nature designs tough collagen: explaining the nanostructure of collagen fibrils.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12285-90. doi: 10.1073/pnas.0603216103. Epub 2006 Aug 8.
9
Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils.
J R Soc Interface. 2006 Feb 22;3(6):117-21. doi: 10.1098/rsif.2005.0100.
10
Reduced parameter formulation for incorporating fiber level viscoelasticity into tissue level biomechanical models.
Ann Biomed Eng. 2006 Jul;34(7):1164-72. doi: 10.1007/s10439-006-9124-6. Epub 2006 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验