Rabbani Arash, Sadeghkhani Ali, Holland Andrew, Besharat Mohsen, Fang Han, Babaei Masoud, Barrera Olga
School of Computer Science, University of Leeds, Leeds, UK.
School of Civil Engineering, University of Leeds, Leeds, UK.
Philos Trans A Math Phys Eng Sci. 2025 Mar 13;383(2292):20240225. doi: 10.1098/rsta.2024.0225.
This study introduces an adaptive three-dimensional (3D) image synthesis technique for creating variational realizations of fibrous meniscal tissue microstructures. The method allows controlled deviation from original geometries by modifying parameters such as porosity, pore size and specific surface area of image patches. The unbiased reconstructed samples matched the morphological and hydraulic properties of original tissues, with relative errors generally below 10%. Additional samples were generated with predefined deviations to increase dataset diversity. Analysis of 1500 synthesized geometries revealed relationships between microstructural features, hydraulic permeability and mechanical properties. Empirical correlations were derived to predict longitudinal and transverse hydraulic permeability as functions of porosity, with values of 0.98 and 0.97, respectively. Finite-element simulations examined mechanical behaviour under compression, showing stress concentrations at fibre cross-links and permeability reductions that varied with porosity and flow direction. These results led to a porosity-dependent model for normalized Young's modulus ([Formula: see text]). The proposed correlations and data augmentation technique aid in investigating structure-property relationships in meniscal tissue, potentially benefiting biomimetic implant design. This approach may help bridge data gaps where obtaining numerous real samples is impractical or unethical.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.
本研究介绍了一种自适应三维(3D)图像合成技术,用于创建纤维状半月板组织微结构的可变实现。该方法允许通过修改图像块的孔隙率、孔径和比表面积等参数来控制与原始几何形状的偏差。无偏重建样本与原始组织的形态和水力特性相匹配,相对误差通常低于10%。通过预定义偏差生成额外的样本,以增加数据集的多样性。对1500个合成几何形状的分析揭示了微观结构特征、水力渗透率和力学性能之间的关系。得出了经验相关性,以预测纵向和横向水力渗透率作为孔隙率的函数,相关系数分别为0.98和0.97。有限元模拟研究了压缩下的力学行为,显示纤维交联处的应力集中以及渗透率降低随孔隙率和流动方向而变化。这些结果导致了一个孔隙率相关的归一化杨氏模量模型([公式:见原文])。所提出的相关性和数据增强技术有助于研究半月板组织中的结构-性能关系,可能有利于仿生植入物设计。这种方法可能有助于弥补在获取大量真实样本不切实际或不道德的情况下的数据缺口。本文是主题为“医疗保健和生物系统的不确定性量化(第1部分)”的一部分。