Grasso Frank W, Setlur Pradeep
BioMimetic and Cognitive Robotics Laboratory, Department of Psychology, Brooklyn College, The City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
Bioinspir Biomim. 2007 Dec;2(4):S170-81. doi: 10.1088/1748-3182/2/4/S06. Epub 2007 Oct 16.
Octopus arms house 200-300 independently controlled suckers that can alternately afford an octopus fine manipulation of small objects and produce high adhesion forces on virtually any non-porous surface. Octopuses use their suckers to grasp, rotate and reposition soft objects (e.g., octopus eggs) without damaging them and to provide strong, reversible adhesion forces to anchor the octopus to hard substrates (e.g., rock) during wave surge. The biological 'design' of the sucker system is understood to be divided anatomically into three functional groups: the infundibulum that produces a surface seal that conforms to arbitrary surface geometry; the acetabulum that generates negative pressures for adhesion; and the extrinsic muscles that allow adhered surfaces to be rotated relative to the arm. The effector underlying these abilities is the muscular hydrostat. Guided by sensory input, the thousands of muscle fibers within the muscular hydrostats of the sucker act in coordination to provide stiffness or force when and where needed. The mechanical malleability of octopus suckers, the interdigitated arrangement of their muscle fibers and the flexible interconnections of its parts make direct studies of their control challenging. We developed a dynamic simulator (ABSAMS) that models the general functioning of muscular hydrostat systems built from assemblies of biologically constrained muscular hydrostat models. We report here on simulation studies of octopus-inspired and artificial suckers implemented in this system. These simulations reproduce aspects of octopus sucker performance and squid tentacle extension. Simulations run with these models using parameters from man-made actuators and materials can serve as tools for designing soft robotic implementations of man-made artificial suckers and soft manipulators.
章鱼的触腕上分布着200 - 300个可独立控制的吸盘,这些吸盘既能让章鱼精细地操控小物体,又能在几乎任何无孔表面产生强大的附着力。章鱼利用吸盘抓取、旋转并重新放置柔软物体(如章鱼卵)而不造成损伤,还能在海浪涌动时提供强大且可逆的附着力,将自身固定在坚硬的基质(如岩石)上。吸盘系统的生物学“设计”在解剖学上被认为可分为三个功能组:漏斗状结构,用于形成与任意表面几何形状相符的表面密封;吸盘杯,用于产生负压以实现吸附;外部肌肉,使吸附的表面能够相对于触腕旋转。这些能力的基础效应器是肌肉流体静力学结构。在感官输入的引导下,吸盘肌肉流体静力学结构内的数千条肌肉纤维协同作用,在需要的时间和位置提供刚度或力量。章鱼吸盘的机械可塑性、其肌肉纤维的交叉排列以及各部分的灵活连接,使得对其控制的直接研究具有挑战性。我们开发了一个动态模拟器(ABSAMS),该模拟器对由具有生物约束的肌肉流体静力学模型组件构建的肌肉流体静力学系统的一般功能进行建模。我们在此报告在该系统中实现的受章鱼启发的吸盘和人工吸盘的模拟研究。这些模拟再现了章鱼吸盘性能和鱿鱼触手伸展的某些方面。使用人造致动器和材料的参数运行这些模型进行的模拟,可作为设计人造人工吸盘和软操纵器的软机器人实施方案的工具。