Suppr超能文献

线粒体核受体与转录因子:谁在掌管细胞?

Mitochondrial nuclear receptors and transcription factors: who's minding the cell?

作者信息

Lee Junghee, Sharma Swati, Kim Jinho, Ferrante Robert J, Ryu Hoon

机构信息

Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.

出版信息

J Neurosci Res. 2008 Apr;86(5):961-71. doi: 10.1002/jnr.21564.

Abstract

Mitochondria are power organelles generating biochemical energy, ATP, in the cell. Mitochondria play a variety of roles, including integrating extracellular signals and executing critical intracellular events, such as neuronal cell survival and death. Increasing evidence suggests that a cross-talk mechanism between mitochondria and the nucleus is closely related to neuronal function and activity. Nuclear receptors (estrogen receptors, thyroid (T3) hormone receptor, peroxisome proliferators-activated receptor gamma2) and transcription factors (cAMP response binding protein, p53) have been found to target mitochondria and exert prosurvival and prodeath pathways. In this context, the regulation of mitochondrial function via the translocation of nuclear receptors and transcription factors may underlie some of the mechanisms involved in neuronal survival and death. Understanding the function of nuclear receptors and transcription factors in the mitochondria may provide important pharmacological utility in the treatment of neurodegenerative conditions. Thus, the modulation of signaling pathways via mitochondria-targeting nuclear receptors and transcription factors is rapidly emerging as a novel therapeutic target.

摘要

线粒体是在细胞中产生生物化学能量ATP的动力细胞器。线粒体发挥着多种作用,包括整合细胞外信号以及执行关键的细胞内事件,如神经元细胞的存活和死亡。越来越多的证据表明,线粒体与细胞核之间的相互作用机制与神经元功能和活动密切相关。已发现核受体(雌激素受体、甲状腺(T3)激素受体、过氧化物酶体增殖物激活受体γ2)和转录因子(cAMP反应结合蛋白、p53)靶向线粒体并发挥促存活和促死亡途径。在这种情况下,通过核受体和转录因子的易位对线粒体功能的调节可能是神经元存活和死亡所涉及的一些机制的基础。了解核受体和转录因子在线粒体中的功能可能为神经退行性疾病的治疗提供重要的药理学应用。因此,通过靶向线粒体的核受体和转录因子来调节信号通路正迅速成为一个新的治疗靶点。

相似文献

1
Mitochondrial nuclear receptors and transcription factors: who's minding the cell?
J Neurosci Res. 2008 Apr;86(5):961-71. doi: 10.1002/jnr.21564.
2
The coordination of nuclear and mitochondrial communication during aging and calorie restriction.
Ageing Res Rev. 2009 Jul;8(3):173-88. doi: 10.1016/j.arr.2009.03.003. Epub 2009 Mar 27.
3
The failure of mitochondria leads to neurodegeneration: Do mitochondria need a jump start?
Adv Drug Deliv Rev. 2009 Nov 30;61(14):1316-23. doi: 10.1016/j.addr.2009.07.016. Epub 2009 Aug 27.
4
The complex crosstalk between mitochondria and the nucleus: What goes in between?
Int J Biochem Cell Biol. 2015 Jun;63:10-5. doi: 10.1016/j.biocel.2015.01.026. Epub 2015 Feb 7.
5
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
6
Nuclear receptors and other nuclear transcription factors in mitochondria: regulatory molecules in a new environment.
Biochim Biophys Acta. 2008 Jan;1783(1):1-11. doi: 10.1016/j.bbamcr.2007.10.021. Epub 2007 Nov 13.
7
The roles of nuclear receptors CAR and PXR in hepatic energy metabolism.
Drug Metab Pharmacokinet. 2008;23(1):8-13. doi: 10.2133/dmpk.23.8.

引用本文的文献

3
Genetic associations with polycystic ovary syndrome: the role of the mitochondrial genome; a systematic review and meta-analysis.
J Clin Pathol. 2022 Dec;75(12):815-824. doi: 10.1136/jcp-2021-208028. Epub 2022 Sep 16.
4
Filtering of Data-Driven Gene Regulatory Networks Using as a Case Study.
Front Genet. 2021 Jul 28;12:649764. doi: 10.3389/fgene.2021.649764. eCollection 2021.
5
Mitochondrial Glucocorticoid Receptors and Their Actions.
Int J Mol Sci. 2021 Jun 3;22(11):6054. doi: 10.3390/ijms22116054.
7
Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response.
Neurotox Res. 2019 Aug;36(2):239-256. doi: 10.1007/s12640-018-9962-7. Epub 2018 Sep 27.
8
Molecular mechanism of estrogen-estrogen receptor signaling.
Reprod Med Biol. 2016 Dec 5;16(1):4-20. doi: 10.1002/rmb2.12006. eCollection 2017 Jan.
10
Hypoxia-mediated alterations and their role in the HER-2/neuregulated CREB status and localization.
Oncotarget. 2016 Aug 9;7(32):52061-52084. doi: 10.18632/oncotarget.10474.

本文引用的文献

1
p53 translational control: a new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics.
Gene. 2007 Jun 15;395(1-2):1-7. doi: 10.1016/j.gene.2007.01.029. Epub 2007 Feb 16.
2
A dynamic machinery for import of mitochondrial precursor proteins.
FEBS Lett. 2007 Jun 19;581(15):2802-10. doi: 10.1016/j.febslet.2007.03.004. Epub 2007 Mar 12.
3
Mitochondrial estrogen receptors--new insights into specific functions.
Trends Endocrinol Metab. 2007 Apr;18(3):89-91. doi: 10.1016/j.tem.2007.02.006. Epub 2007 Feb 26.
4
Translocation of proteins into mitochondria.
Annu Rev Biochem. 2007;76:723-49. doi: 10.1146/annurev.biochem.76.052705.163409.
6
A role for mitochondrial aquaporins in cellular life-and-death decisions?
Am J Physiol Cell Physiol. 2006 Aug;291(2):C195-202. doi: 10.1152/ajpcell.00641.2005. Epub 2006 Apr 19.
7
WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization.
J Biol Chem. 2006 Mar 31;281(13):8600-6. doi: 10.1074/jbc.M507611200. Epub 2006 Jan 26.
8
Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival.
J Biol Chem. 2005 Dec 9;280(49):40398-401. doi: 10.1074/jbc.C500140200. Epub 2005 Oct 5.
9
Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons.
Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13915-20. doi: 10.1073/pnas.0502878102. Epub 2005 Sep 16.
10
PUMA couples the nuclear and cytoplasmic proapoptotic function of p53.
Science. 2005 Sep 9;309(5741):1732-5. doi: 10.1126/science.1114297.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验