Suppr超能文献

心脏成纤维细胞对合成弹性体支架进行预处理可改善工程心脏组织。

Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue.

作者信息

Radisic Milica, Park Hyoungshin, Martens Timothy P, Salazar-Lazaro Johanna E, Geng Wenliang, Wang Yadong, Langer Robert, Freed Lisa E, Vunjak-Novakovic Gordana

机构信息

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

J Biomed Mater Res A. 2008 Sep;86(3):713-24. doi: 10.1002/jbm.a.31578.

Abstract

Native myocardium consists of several cell types, of which approximately one-third are myocytes and most of the nonmyocytes are fibroblasts. By analogy with monolayer culture in which fibroblasts were removed to prevent overgrowth, early attempts to engineer myocardium utilized cell populations enriched for cardiac myocytes (CMs; approximately 80-90% of total cells). We hypothesized that the pre-treatment of synthetic elastomeric scaffolds with cardiac fibroblasts (CFs) will enhance the functional assembly of the engineered cardiac constructs by creating an environment supportive of cardiomyocyte attachment and function. Cells isolated from neonatal rat ventricles were prepared to form three distinct populations: rapidly plating cells identified as CFs, slowly plating cells identified as CMs, and unseparated initial population of cells (US). The cell fractions (3 x 10(6) cells total) were seeded into poly(glycerol sebacate) scaffolds (highly porous discs, 5 mm in diameter x 2-mm thick) using Matrigeltrade mark, either separately (CM or CF), concurrently (US), or sequentially (CF pre-treatment followed by CM culture, CF + CM), and cultured in spinner flasks. The CF + CM group had the highest amplitude of contraction and the lowest excitation threshold, superior DNA content, and higher glucose consumption rate. The CF + CM group exhibited compact 100- to 200-mum thick layers of elongated myocytes aligned in parallel over layers of collagen-producing fibroblasts, while US and CM groups exhibited scattered and poorly elongated myocytes. The sequential co-culture of CF and CM on a synthetic elastomer scaffold thus created an environment supportive of cardiomyocyte attachment, differentiation, and contractile function, presumably due to scaffold conditioning by cultured fibroblasts. When implanted over the infarcted myocardium in a nude rat model, cell-free poly(glycerol sebacate) remained at the ventricular wall after 2 weeks of in vivo, and was vascularized.

摘要

天然心肌由几种细胞类型组成,其中约三分之一是心肌细胞,大多数非心肌细胞是成纤维细胞。类似于单层培养中去除成纤维细胞以防止过度生长,早期构建心肌组织的尝试利用了富含心肌细胞(CMs;约占总细胞的80 - 90%)的细胞群体。我们假设用心脏成纤维细胞(CFs)对合成弹性体支架进行预处理,将通过创造一个支持心肌细胞附着和功能的环境来增强工程化心脏构建体的功能组装。从新生大鼠心室分离的细胞被制备成三个不同的群体:快速贴壁的细胞被鉴定为CFs,缓慢贴壁的细胞被鉴定为CMs,以及未分离的初始细胞群体(US)。将细胞组分(总共3×10⁶个细胞)使用基质胶分别(CM或CF)、同时(US)或顺序(CF预处理后再进行CM培养,CF + CM)接种到聚(癸二酸甘油酯)支架(高度多孔的圆盘,直径5毫米×厚2毫米)中,并在旋转瓶中培养。CF + CM组具有最高的收缩幅度和最低的兴奋阈值、更高的DNA含量以及更高的葡萄糖消耗率。CF + CM组显示出紧密的100至200微米厚的伸长心肌细胞层,这些细胞与产生胶原蛋白的成纤维细胞层平行排列,而US组和CM组则显示出分散且伸长不佳的心肌细胞。因此,在合成弹性体支架上顺序共培养CF和CM创造了一个支持心肌细胞附着、分化和收缩功能的环境,推测这是由于培养的成纤维细胞对支架的调节作用。当植入裸鼠模型的梗死心肌上时,无细胞的聚(癸二酸甘油酯)在体内2周后仍留在心室壁上,并实现了血管化。

相似文献

1
Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue.
J Biomed Mater Res A. 2008 Sep;86(3):713-24. doi: 10.1002/jbm.a.31578.
2
PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues.
Biomaterials. 2013 Sep;34(27):6355-66. doi: 10.1016/j.biomaterials.2013.04.045. Epub 2013 Jun 6.
3
An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart.
Biomaterials. 2010 May;31(14):3885-93. doi: 10.1016/j.biomaterials.2010.01.108. Epub 2010 Feb 11.
4
Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.
Biomaterials. 2014 Aug;35(26):7346-54. doi: 10.1016/j.biomaterials.2014.05.014. Epub 2014 Jun 10.
5
Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features.
Tissue Eng Part A. 2013 Mar;19(5-6):793-807. doi: 10.1089/ten.tea.2012.0330. Epub 2012 Nov 28.
6
Elastomeric PGS scaffolds in arterial tissue engineering.
J Vis Exp. 2011 Apr 8(50):2691. doi: 10.3791/2691.
7
Engineering of functional contractile cardiac tissues cultured in a perfusion system.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3590-3. doi: 10.1109/IEMBS.2008.4649982.
8
Functional consequences of a tissue-engineered myocardial patch for cardiac repair in a rat infarct model.
Tissue Eng Part A. 2014 Apr;20(7-8):1325-35. doi: 10.1089/ten.TEA.2013.0312. Epub 2014 Feb 6.

引用本文的文献

4
Advances in cardiac tissue engineering and heart-on-a-chip.
J Biomed Mater Res A. 2024 Apr;112(4):492-511. doi: 10.1002/jbm.a.37633. Epub 2023 Nov 1.
5
Organs-on-a-chip: a union of tissue engineering and microfabrication.
Trends Biotechnol. 2023 Mar;41(3):410-424. doi: 10.1016/j.tibtech.2022.12.018. Epub 2023 Jan 31.
7
Current methods for fabricating 3D cardiac engineered constructs.
iScience. 2022 Apr 29;25(5):104330. doi: 10.1016/j.isci.2022.104330. eCollection 2022 May 20.
8
3D Biofabrication of a Cardiac Tissue Construct for Sustained Longevity and Function.
ACS Appl Mater Interfaces. 2022 May 18;14(19):21800-21813. doi: 10.1021/acsami.1c23883. Epub 2022 May 9.
9
Cardiac Organoids: A 3D Technology for Modeling Heart Development and Disease.
Stem Cell Rev Rep. 2022 Dec;18(8):2593-2605. doi: 10.1007/s12015-022-10385-1. Epub 2022 May 8.
10
FRESH 3D bioprinting a contractile heart tube using human stem cell-derived cardiomyocytes.
Biofabrication. 2022 Mar 16;14(2). doi: 10.1088/1758-5090/ac58be.

本文引用的文献

1
Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds.
Tissue Eng. 2006 Aug;12(8):2077-91. doi: 10.1089/ten.2006.12.2077.
2
Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle.
Circulation. 2006 Jul 4;114(1 Suppl):I72-8. doi: 10.1161/CIRCULATIONAHA.105.001560.
3
Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering.
Tissue Eng. 2006 Apr;12(4):917-25. doi: 10.1089/ten.2006.12.917.
4
Cardiac fibroblasts: friend or foe?
Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1015-26. doi: 10.1152/ajpheart.00023.2006. Epub 2006 Apr 14.
5
Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue.
Biotechnol Bioeng. 2006 Feb 5;93(2):332-43. doi: 10.1002/bit.20722.
7
Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages.
Nature. 2005 Feb 10;433(7026):647-53. doi: 10.1038/nature03215.
8
Structural and functional characterisation of cardiac fibroblasts.
Cardiovasc Res. 2005 Jan 1;65(1):40-51. doi: 10.1016/j.cardiores.2004.08.020.
9
Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds.
Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18129-34. doi: 10.1073/pnas.0407817101. Epub 2004 Dec 16.
10
Smooth muscle actin determines mechanical force-induced p38 activation.
J Biol Chem. 2005 Feb 25;280(8):7273-84. doi: 10.1074/jbc.M410819200. Epub 2004 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验