Zou Guangyu, Hua Jing, Muzik Otto
Department of Computer Science, Wayne State University, USA.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):367-74. doi: 10.1007/978-3-540-75757-3_45.
Accurate registration of cortical structures plays a fundamental role in statistical analysis of brain images across population. This paper presents a novel framework for the non-rigid intersubject brain surface registration, using conformal structure and spherical thin-plate splines. By resorting to the conformal structure, complete characteristics regarding the intrinsic cortical geometry can be retained as a mean curvature function and a conformal factor function defined on a canonical, spherical domain. In this transformed space, spherical thin-plate splines are firstly used to explicitly match a few prominent homologous landmarks, and in the meanwhile, interpolate a global deformation field. A post-optimization procedure is then employed to further refine the alignment of minor cortical features based on the geometric parameters preserved on the domain. Our experiments demonstrate that the proposed framework is highly competitive with others for brain surface registration and population-based statistical analysis. We have applied our method in the identification of cortical abnormalities in PET imaging of patients with neurological disorders and accurate results are obtained.
皮质结构的精确配准在跨人群脑图像的统计分析中起着基础性作用。本文提出了一种用于非刚性个体间脑表面配准的新框架,该框架使用共形结构和球面薄板样条。借助共形结构,关于内在皮质几何形状的完整特征可以作为定义在标准球面上的平均曲率函数和共形因子函数保留下来。在这个变换后的空间中,首先使用球面薄板样条来明确匹配一些突出的同源地标,同时内插一个全局变形场。然后采用一个后优化过程,基于在该域上保留的几何参数进一步细化次要皮质特征的对齐。我们的实验表明,所提出的框架在脑表面配准和基于人群的统计分析方面与其他方法相比具有很强的竞争力。我们已将我们的方法应用于神经疾病患者PET成像中皮质异常的识别,并获得了准确的结果。