DeLorenzo Christine, Papademetris Xenophon, Wu Kun, Vives Kenneth P, Spencer Dennis, Duncan James S
Department of Electrical Engineering, Yale University, P.O. Box 208042 New Haven, CT 06520-8042, USA.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):932-9. doi: 10.1007/11866565_114.
The brain deforms non-rigidly during neurosurgery, preventing preoperatively acquired images from accurately depicting the intraoperative brain. If the deformed brain surface can be detected, biomechanical models can be applied to calculate the resulting volumetric deformation. The reliability of this volumetric calculation is dependent on the accuracy of the surface detection. This work presents a surface tracking algorithm which relies on Bayesian analysis to track cortical surface movement. The inputs to the model are 3D preoperative brain images and intraoperative stereo camera images. The addition of a camera calibration optimization term creates a more robust model, capable of tracking the cortical surface in the presence of camera calibration error.
在神经外科手术过程中,大脑会发生非刚性变形,这使得术前获取的图像无法准确描绘术中的大脑情况。如果能够检测到变形的大脑表面,就可以应用生物力学模型来计算由此产生的体积变形。这种体积计算的可靠性取决于表面检测的准确性。这项工作提出了一种表面跟踪算法,该算法依靠贝叶斯分析来跟踪皮质表面的运动。该模型的输入是术前的三维脑部图像和术中的立体相机图像。添加相机校准优化项可创建一个更强大的模型,能够在存在相机校准误差的情况下跟踪皮质表面。