Konukoglu Ender, Clatz Olivier, Bondiau Pierre-Yves, Sermesant Maxime, Delingette Hervé, Ayache Nicholas
Asclepios Research Project, INRIA Sophia Antipolis, France.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):549-56. doi: 10.1007/978-3-540-75757-3_67.
In cancer treatment, understanding the aggressiveness of the tumor is essential in therapy planning and patient follow-up. In this article, we present a novel method for quantifying the speed of invasion of gliomas in white and grey matter from time series of magnetic resonance (MR) images. The proposed approach is based on mathematical tumor growth models using the reaction-diffusion formalism. The quantification process is formulated by an inverse problem and solved using anisotropic fast marching method yielding an efficient algorithm. It is tested on a few images to get a first proof of concept with promising new results.
在癌症治疗中,了解肿瘤的侵袭性对于治疗方案规划和患者随访至关重要。在本文中,我们提出了一种新方法,可根据磁共振(MR)图像的时间序列来量化神经胶质瘤在白质和灰质中的侵袭速度。所提出的方法基于使用反应扩散形式的数学肿瘤生长模型。量化过程通过一个反问题来表述,并使用各向异性快速行进法求解,从而得到一种高效算法。该方法在一些图像上进行了测试,以获得初步的概念验证,并取得了有前景的新结果。