Suppr超能文献

在脑部三维磁共振图像中模拟神经胶质瘤生长及占位效应。

Modeling glioma growth and mass effect in 3D MR images of the brain.

作者信息

Hogea Cosmina, Davatzikos Christos, Biros George

机构信息

Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Med Image Comput Comput Assist Interv. 2007;10(Pt 1):642-50. doi: 10.1007/978-3-540-75757-3_78.

Abstract

In this article, we propose a framework for modeling glioma growth and the subsequent mechanical impact on the surrounding brain tissue (mass-effect) in a medical imaging context. Glioma growth is modeled via nonlinear reaction-advection-diffusion, with a two-way coupling with the underlying tissue elastic deformation. Tumor bulk and infiltration and subsequent mass-effects are not regarded separately, but captured by the model itself in the course of its evolution. Our formulation is fully Eulerian and naturally allows for updating the tumor diffusion coefficient following structural displacements caused by tumor growth/infiltration. We show that model parameters can be estimated via optimization based on imaging data, using efficient solution algorithms on regular grids. We test the model and the automatic optimization framework on real brain tumor data sets, achieving significant improvement in landmark prediction compared to a simplified purely mechanical approach.

摘要

在本文中,我们提出了一个框架,用于在医学成像背景下对神经胶质瘤生长及其对周围脑组织的后续机械影响(质量效应)进行建模。神经胶质瘤生长通过非线性反应-平流-扩散进行建模,并与基础组织的弹性变形进行双向耦合。肿瘤体积、浸润以及随后的质量效应并非分别考虑,而是由模型在其演化过程中自行捕捉。我们的公式是完全欧拉格式的,并且自然地允许根据肿瘤生长/浸润引起的结构位移来更新肿瘤扩散系数。我们表明,可以基于成像数据通过优化来估计模型参数,使用规则网格上的高效求解算法。我们在真实脑肿瘤数据集上测试了该模型和自动优化框架,与简化的纯机械方法相比,在地标预测方面取得了显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验