Suppr超能文献

用于函数逼近的密度驱动广义回归神经网络(DD-GRNN)。

Density-driven generalized regression neural networks (DD-GRNN) for function approximation.

作者信息

Goulermas John Y, Liatsis Panos, Zeng Xiao-Jun, Cook Phil

机构信息

Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK.

出版信息

IEEE Trans Neural Netw. 2007 Nov;18(6):1683-96. doi: 10.1109/TNN.2007.902730.

Abstract

This paper proposes a new nonparametric regression method, based on the combination of generalized regression neural networks (GRNNs), density-dependent multiple kernel bandwidths, and regularization. The presented model is generic and substitutes the very large number of bandwidths with a much smaller number of trainable weights that control the regression model. It depends on sets of extracted data density features which reflect the density properties and distribution irregularities of the training data sets. We provide an efficient initialization scheme and a second-order algorithm to train the model, as well as an overfitting control mechanism based on Bayesian regularization. Numerical results show that the proposed network manages to reduce significantly the computational demands of having individual bandwidths, while at the same time, provides competitive function approximation accuracy in relation to existing methods.

摘要

本文提出了一种新的非参数回归方法,该方法基于广义回归神经网络(GRNN)、密度相关的多核带宽和正则化的组合。所提出的模型具有通用性,用数量少得多的可训练权重替代了大量的带宽,这些权重控制着回归模型。它依赖于提取的数据密度特征集,这些特征反映了训练数据集的密度特性和分布不规则性。我们提供了一种有效的初始化方案和二阶算法来训练模型,以及一种基于贝叶斯正则化的过拟合控制机制。数值结果表明,所提出的网络成功地显著降低了使用单个带宽的计算需求,同时,与现有方法相比,提供了具有竞争力的函数逼近精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验