Fukushima Kunihiko
Kansai University, Takatsuki, Osaka 569-1095, Japan.
Neural Netw. 2007 Oct;20(8):904-16. doi: 10.1016/j.neunet.2007.06.003. Epub 2007 Jul 24.
This paper proposes a powerful algorithm for pattern recognition, which uses interpolating vectors for classifying patterns. Labeled reference vectors in a multi-dimensional feature space are first produced by a kind of competitive learning. We then assume a situation where virtual vectors, called interpolating vectors, are densely placed along line segments connecting all pairs of reference vectors of the same label. From these interpolating vectors, we choose the one that has the largest similarity to the test vector. Its label shows the result of pattern recognition. In practice, we can get the same result with a simpler process. We applied this method to the neocognitron for handwritten digit recognition and reduced the error rate from 1.52% to 1.02% for a blind test set of 5000 digits.
本文提出了一种强大的模式识别算法,该算法使用插值向量对模式进行分类。首先通过一种竞争学习在多维特征空间中生成带标签的参考向量。然后,我们假设一种情况,即沿着连接相同标签的所有参考向量对的线段密集放置称为插值向量的虚拟向量。从这些插值向量中,我们选择与测试向量相似度最大的那个。其标签显示模式识别结果。在实际应用中,我们可以通过更简单的过程获得相同的结果。我们将此方法应用于用于手写数字识别的新认知机,对于5000个数字的盲测集,错误率从1.52%降低到了1.02%。