Arthur John V, Boahen Kwabena A
Stanford University, Stanford, CA 94305, USA.
IEEE Trans Neural Netw. 2007 Nov;18(6):1815-25. doi: 10.1109/TNN.2007.900238.
In this paper, we present a network of silicon interneurons that synchronize in the gamma frequency range (20-80 Hz). The gamma rhythm strongly influences neuronal spike timing within many brain regions, potentially playing a crucial role in computation. Yet it has largely been ignored in neuromorphic systems, which use mixed analog and digital circuits to model neurobiology in silicon. Our neurons synchronize by using shunting inhibition (conductance based) with a synaptic rise time. Synaptic rise time promotes synchrony by delaying the effect of inhibition, providing an opportune period for interneurons to spike together. Shunting inhibition, through its voltage dependence, inhibits interneurons that spike out of phase more strongly (delaying the spike further), pushing them into phase (in the next cycle). We characterize the interneuron, which consists of soma (cell body) and synapse circuits, fabricated in a 0.25-microm complementary metal-oxide-semiconductor (CMOS). Further, we show that synchronized interneurons (population of 256) spike with a period that is proportional to the synaptic rise time. We use these interneurons to entrain model excitatory principal neurons and to implement a form of object binding.
在本文中,我们展示了一个在伽马频率范围(20 - 80赫兹)内同步的硅中间神经元网络。伽马节律强烈影响许多脑区的神经元放电时间,可能在信息处理中发挥关键作用。然而,它在神经形态系统中很大程度上被忽视了,神经形态系统使用混合模拟和数字电路在硅中模拟神经生物学。我们的神经元通过使用具有突触上升时间的分流抑制(基于电导)来实现同步。突触上升时间通过延迟抑制作用来促进同步,为中间神经元一起放电提供了一个合适的时期。分流抑制通过其电压依赖性,更强烈地抑制不同步放电的中间神经元(进一步延迟放电),使它们进入同步状态(在下一个周期)。我们对由体细胞(细胞体)和突触电路组成的中间神经元进行了表征,该中间神经元是在0.25微米互补金属氧化物半导体(CMOS)工艺中制造的。此外,我们表明同步的中间神经元(256个群体)放电的周期与突触上升时间成正比。我们使用这些中间神经元来带动模型兴奋性主神经元,并实现一种形式的对象绑定。