Stevenson Steven, Thompson M Corey, Coumbe H Louie, Mackey Mary A, Coumbe Curtis E, Phillips J Paige
Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
J Am Chem Soc. 2007 Dec 26;129(51):16257-62. doi: 10.1021/ja077305z. Epub 2007 Dec 1.
Goals are (1) to selectively synthesize metallic nitride fullerenes (MNFs) in lieu of empty-cage fullerenes (e.g., C60, C70) without compromising MNF yield and (2) to test our hypothesis that MNFs possess a different set of optimal formation parameters than empty-cage fullerenes. In this work, we introduce a novel approach for the selective synthesis of metallic nitride fullerenes. This new method is "Chemically Adjusting Plasma Temperature, Energy, and Reactivity" (CAPTEAR). The CAPTEAR approach with copper nitrate hydrate uses NOx vapor from NOx generating solid reagents, air, and combustion to "tune" the temperature, energy, and reactivity of the plasma environment. The extent of temperature, energy, and reactive environment is stoichiometrically varied until optimal conditions for selective MNF synthesis are achieved. Analysis of soot extracts indicate that percentages of C60 and Sc3N@C80 are inversely related, whereas the percentages of C70 and higher empty-cage C2n fullerenes are largely unaffected. Hence, there may be a "competitive link" in the formation and mechanism of C60 and Sc3N@C80. Using this CAPTEAR method, purified MNFs (96% Sc3N@C80, 12 mg) have been obtained in soot extracts without a significant penalty in milligram yield when compared to control soot extracts (4% Sc3N@C80, 13 mg of Sc3N@C80). The CAPTEAR process with Cu(NO3)2.2.5H2O uses an exothermic nitrate moiety to suppress empty-cage fullerene formation, whereas Cu functions as a catalyst additive to offset the reactive plasma environment and boost the Sc3N@C80 MNF production.
(1)选择性地合成金属氮化物富勒烯(MNFs)以替代空笼富勒烯(如C60、C70),同时不降低MNF的产率;(2)检验我们的假设,即MNFs具有与空笼富勒烯不同的一组最佳形成参数。在这项工作中,我们介绍了一种选择性合成金属氮化物富勒烯的新方法。这种新方法是“化学调节等离子体温度、能量和反应性”(CAPTEAR)。采用硝酸铜水合物的CAPTEAR方法利用来自产生氮氧化物的固体试剂、空气和燃烧产生的氮氧化物蒸汽来“调节”等离子体环境的温度、能量和反应性。温度、能量和反应环境的程度按化学计量变化,直到实现选择性合成MNF的最佳条件。烟灰提取物分析表明,C60和Sc3N@C80的百分比呈负相关,而C70和更高的空笼C2n富勒烯的百分比基本不受影响。因此,C60和Sc3N@C80的形成和机制之间可能存在“竞争联系”。使用这种CAPTEAR方法,与对照烟灰提取物(4% Sc3N@C80,13毫克Sc3N@C80)相比,在烟灰提取物中获得了纯化的MNFs(96% Sc3N@C80,12毫克),毫克产率没有显著损失。采用Cu(NO3)2·2.5H2O的CAPTEAR过程利用放热的硝酸根部分抑制空笼富勒烯的形成,而铜作为催化剂添加剂来抵消反应性等离子体环境并提高Sc3N@C80 MNF的产量。