Suppr超能文献

球形富勒烯之间光诱导电子转移的小重组能。

Small reorganization energies of photoinduced electron transfer between spherical fullerenes.

机构信息

Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

出版信息

J Phys Chem A. 2013 Aug 8;117(31):6737-43. doi: 10.1021/jp4047165. Epub 2013 Jul 30.

Abstract

Rate constants of photoinduced electron transfer between spherical fullerenes were determined using triscandium nitride encapsulated C80 fullerene (Sc3N@C80) as an electron donor and the triplet excited state of lithium ion-encapsulated C60 fullerene (Li(+)@C60) as an electron acceptor in polar and less polar solvents by laser flash photolysis measurements. Upon nanosecond laser excitation at 355 nm of a benzonitrile (PhCN) solution of Li(+)@C60 and Sc3N@C80, electron transfer from Sc3N@C80 to the triplet excited state [(3)(Li(+)@C60)] occurred to produce Sc3N@C80(•+) and Li(+)@C60(•-) (λ(max) = 1035 nm). The rates of the photoinduced electron transfer were monitored by the decay of absorption at λ(max) = 750 nm due to (3)(Li(+)@C60). The second-order rate constant of electron transfer from Sc3N@C80 to (3)(Li(+)@C60)* was determined to be k(et) = 1.5 × 10(9) M(-1) s(-1) from dependence of decay rate constant of (3)(Li(+)@C60)* on the Sc3N@C80 concentration. The rate constant of back electron transfer from Li(+)@C60(•-) to Sc3N@C80(•+) was also determined to be k(bet) = 1.9 × 10(9) M(-1) s(-1), which is close to be the diffusion limited value in PhCN. Similarly, the rate constants of photoinduced electron transfer from C60 to (3)(Li(+)@C60)* and from Sc3N@C80 to (3)C60* were determined together with the back electron-transfer reactions. The driving force dependence of log k(et) and log k(bet) was well fitted by using the Marcus theory of outer-sphere electron transfer, in which the internal (bond) reorganization energy (λi) was estimated by DFT calculations and the solvent reorganization energy (λs) was calculated by the Marcus equation. When PhCN was replaced by o-dichlorobenzene (o-DCB), the λ value was decreased because of the smaller solvation changes of highly spherical fullerenes upon electron transfer in a less polar solvent.

摘要

使用三铯氮化物封装的 C80 富勒烯(Sc3N@C80)作为电子供体和锂离子封入 C60 富勒烯的三重激发态(Li(+)@C60)作为电子受体,在极性和非极性溶剂中通过激光闪光光解测量确定了球形全碳富勒烯之间光诱导电子转移的速率常数。在 355nm 的纳秒激光激发下,Li(+)@C60 和 Sc3N@C80 的苯腈(PhCN)溶液中,电子从 Sc3N@C80 转移到三重激发态 [(3)(Li(+)@C60)*],产生 Sc3N@C80(•+)和 Li(+)@C60(•-)(λ(max) = 1035nm)。通过监测由于 (3)(Li(+)@C60)*而在 λ(max) = 750nm 处吸收的衰减来监测光诱导电子转移的速率。从 (3)(Li(+)@C60)*衰减速率常数对 Sc3N@C80 浓度的依赖性确定,从 Sc3N@C80 到 (3)(Li(+)@C60)*的电子转移的二级速率常数 k(et) = 1.5×10(9)M(-1)s(-1)。Li(+)@C60(•-)到 Sc3N@C80(•+)的反向电子转移速率常数 k(bet)也被确定为 1.9×10(9)M(-1)s(-1),这接近于 PhCN 中的扩散限制值。同样,从 C60 到 (3)(Li(+)@C60)和从 Sc3N@C80 到 (3)C60的光诱导电子转移速率常数以及反向电子转移反应也被确定。通过使用外球电子转移的 Marcus 理论对 log k(et)和 log k(bet)的驱动力依赖性进行了很好的拟合,其中内部(键)重组能 (λi) 通过 DFT 计算进行了估计,而溶剂重组能 (λs) 通过 Marcus 方程进行了计算。当 PhCN 被邻二氯苯(o-DCB)取代时,由于在非极性溶剂中电子转移时高度球形富勒烯的溶剂化变化较小,λ 值降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验