Suppr超能文献

探究细菌反应中心的灵活性:野生型蛋白比两个位点特异性突变体更刚性。

Probing the flexibility of the bacterial reaction center: the wild-type protein is more rigid than two site-specific mutants.

作者信息

Sacquin-Mora Sophie, Sebban Pierre, Derrien Valérie, Frick Bernhard, Lavery Richard, Alba-Simionesco Christiane

机构信息

Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.

出版信息

Biochemistry. 2007 Dec 25;46(51):14960-8. doi: 10.1021/bi7004416. Epub 2007 Dec 4.

Abstract

Experimental and theoretical studies have stressed the importance of flexibility for protein function. However, more local studies of protein dynamics, using temperature factors from crystallographic data or elastic models of protein mechanics, suggest that active sites are among the most rigid parts of proteins. We have used quasielastic neutron scattering to study the native reaction center protein from the purple bacterium Rhodobacter sphaeroides, over a temperature range of 4-260 K, in parallel with two nonfunctional mutants both carrying the mutations L212Glu/L213Asp --> Ala/Ala (one mutant carrying, in addition, the M249Ala --> Tyr mutation). The so-called dynamical transition temperature, Td, remains the same for the three proteins around 230 K. Below Td the mean square displacement, u2, and the dynamical structure factor, S(Q,omega), as measured respectively by backscattering and time-of-flight techniques are identical. However, we report that above Td, where anharmonicity and diffusive motions take place, the native protein is more rigid than the two nonfunctional mutants. The higher flexibility of both mutant proteins is demonstrated by either their higher u2 values or the notable quasielastic broadening of S(Q,omega) that reveals the diffusive nature of the motions involved. Remarkably, we demonstrate here that in proteins, point genetic mutations may notably affect the overall protein dynamics, and this effect can be quantified by neutron scattering. Our results suggest a new direction of investigation for further understanding of the relationship between fast dynamics and activity in proteins. Brownian dynamics simulations we have carried out are consistent with the neutron experiments, suggesting that a rigid core within the native protein is specifically softened by distant point mutations. L212Glu, which is systematically conserved in all photosynthetic bacteria, seems to be one of the key residues that exerts a distant control over the rigidity of the core of the protein.

摘要

实验和理论研究都强调了蛋白质功能中灵活性的重要性。然而,更多关于蛋白质动力学的局部研究,利用晶体学数据中的温度因子或蛋白质力学的弹性模型,表明活性位点是蛋白质中最刚性的部分之一。我们利用准弹性中子散射研究了来自紫色细菌球形红杆菌的天然反应中心蛋白,温度范围为4 - 260 K,同时研究了两个无功能突变体,它们都携带L212Glu/L213Asp→Ala/Ala突变(其中一个突变体还携带M249Ala→Tyr突变)。三种蛋白质的所谓动力学转变温度Td在230 K左右保持不变。在Td以下,分别通过背散射和飞行时间技术测量的均方位移u2和动力学结构因子S(Q,ω)是相同的。然而,我们报告称,在Td以上,发生非谐性和扩散运动时,天然蛋白比两个无功能突变体更刚性。两个突变体蛋白更高的灵活性通过其更高的u2值或S(Q,ω)明显的准弹性展宽得以证明,这揭示了所涉及运动的扩散性质。值得注意的是,我们在此证明,在蛋白质中,点基因突变可能显著影响整体蛋白质动力学,并且这种影响可以通过中子散射进行量化。我们进行的布朗动力学模拟与中子实验一致,表明天然蛋白中的刚性核心会因远距离点突变而特异性软化。在所有光合细菌中系统保守的L212Glu似乎是对蛋白质核心刚性施加远距离控制的关键残基之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验