CNR Istituto Officina Materiali, Institut Laue-Langevin, Grenoble, France; Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1 et CNRS, Villeurbanne, France.
CNR Istituto di Cristallografia, Monterotondo Stazione, Rome, Italy.
Biophys J. 2019 May 7;116(9):1759-1768. doi: 10.1016/j.bpj.2019.03.029. Epub 2019 Apr 2.
Studies on the dynamical properties of photosynthetic membranes of land plants and purple bacteria have been previously performed by neutron spectroscopy, revealing a tight coupling between specific photochemical reactions and macromolecular dynamics. Here, we probed the intrinsic dynamics of biotechnologically useful mutants of the green alga Chlamydomonas reinhardtii by incoherent neutron scattering coupled with prompt chlorophyll fluorescence experiments. We brought to light that single amino acid replacements in the plastoquinone (PQ)-binding niche of the photosystem II D1 protein impair electron transport (ET) efficiency between quinones and confer increased flexibility to the host membranes, expanding to the entire cells. Hence, a more flexible environment in the PQ-binding niche has been associated to a less efficient ET. A similar function/dynamics relationship was also demonstrated in Rhodobacter sphaeroides reaction centers having inhibited ET, indicating that flexibility at the quinones region plays a crucial role in evolutionarily distant organisms. Instead, a different functional/dynamical correlation was observed in algal mutants hosting a single amino acid replacement residing in a D1 domain far from the PQ-binding niche. Noteworthy, this mutant displayed the highest degree of flexibility, and besides having a nativelike ET efficiency in physiological conditions, it acquired novel, to our knowledge, phenotypic traits enabling it to preserve a high maximal quantum yield of photosystem II photochemistry in extreme habitats. Overall, in the nanosecond timescale, the degree of the observed flexibility is related to the mutation site; in the picosecond timescale, we highlighted the presence of a more pronounced dynamic heterogeneity in all mutants compared to the native cells, which could be related to a marked chemically heterogeneous environment.
先前已有研究利用中子散射光谱技术研究了陆地植物和紫色光合细菌光合膜的动力学特性,结果表明特定光化学反应与生物大分子动力学之间存在紧密的耦合关系。在此,我们通过非相干中子散射与瞬时光合叶绿素荧光实验相结合,研究了绿藻莱茵衣藻生物技术有用突变体的固有动力学。结果表明,在光合系统 II D1 蛋白的质体醌结合部位发生单个氨基酸替换会损害醌之间的电子传递(ET)效率,并赋予宿主膜更大的灵活性,这种灵活性扩展到整个细胞。因此,在质体醌结合部位具有更大灵活性的环境与更低效的 ET 相关。在 Rhodobacter sphaeroides 反应中心中也证明了类似的功能/动力学关系,该反应中心的 ET 受到抑制,表明在进化上相距甚远的生物体中,醌区域的灵活性起着至关重要的作用。相反,在宿主单个氨基酸替换位于远离质体醌结合部位的 D1 结构域的藻类突变体中观察到了不同的功能/动力学相关性。值得注意的是,该突变体显示出最高的灵活性,并且除了在生理条件下具有类似天然的 ET 效率外,它还获得了新的表型特征,据我们所知,这些表型特征使它能够在极端生境中保持高光系统 II 光化学的最大量子产率。总体而言,在纳秒时间尺度上,观察到的灵活性程度与突变部位有关;在皮秒时间尺度上,与天然细胞相比,我们强调了所有突变体中存在更明显的动态异质性,这可能与明显的化学异质性环境有关。