Suppr超能文献

来自类鼻疽伯克霍尔德菌的鸟嘌呤核苷酸交换因子BopE采用了沙门氏菌SopE/SopE2折叠的紧凑形式,并在与Cdc42相互作用时经历从封闭到开放的构象变化。

The guanine-nucleotide-exchange factor BopE from Burkholderia pseudomallei adopts a compact version of the Salmonella SopE/SopE2 fold and undergoes a closed-to-open conformational change upon interaction with Cdc42.

作者信息

Upadhyay Abhishek, Wu Huan-Lin, Williams Christopher, Field Terry, Galyov Edouard E, van den Elsen Jean M H, Bagby Stefan

机构信息

Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.

出版信息

Biochem J. 2008 May 1;411(3):485-93. doi: 10.1042/BJ20071546.

Abstract

BopE is a type III secreted protein from Burkholderia pseudomallei, the aetiological agent of melioidosis, a severe emerging infection. BopE is a GEF (guanine-nucleotide-exchange factor) for the Rho GTPases Cdc42 (cell division cycle 42) and Rac1. We have determined the structure of BopE catalytic domain (amino acids 78-261) by NMR spectroscopy and it shows that BopE(78-261) comprises two three-helix bundles (alpha1alpha4alpha5 and alpha2alpha3alpha6). This fold is similar to that adopted by the BopE homologues SopE and SopE2, which are GEFs from Salmonella. Whereas the two three-helix bundles of SopE(78-240) and SopE2(69-240) form the arms of a 'Lambda' shape, BopE(78-261) adopts a more closed conformation with substantial interactions between the two three-helix bundles. We propose that arginine and proline residues are important in the conformational differences between BopE and SopE/E2. Analysis of the molecular interface in the SopE(78-240)-Cdc42 complex crystal structure indicates that, in a BopE-Cdc42 interaction, the closed conformation of BopE(78-261) would engender steric clashes with the Cdc42 switch regions. This implies that BopE(78-261) must undergo a closed-to-open conformational change in order to catalyse guanine nucleotide exchange. In an NMR titration to investigate the BopE(78-261)-Cdc42 interaction, the appearance of additional peaks per NH for residues in hinge regions of BopE(78-261) indicates that BopE(78-261) does undergo a closed-to-open conformational change in the presence of Cdc42. The conformational change hypothesis is further supported by substantial improvement of BopE(78-261) catalytic efficiency through mutations that favour an open conformation. Requirement for closed-to-open conformational change explains the 10-40-fold lower k(cat) of BopE compared with SopE and SopE2.

摘要

BopE是一种来自类鼻疽杆菌的III型分泌蛋白,类鼻疽杆菌是类鼻疽病(一种严重的新发感染病)的病原体。BopE是Rho GTP酶Cdc42(细胞分裂周期蛋白42)和Rac1的鸟嘌呤核苷酸交换因子(GEF)。我们通过核磁共振光谱法确定了BopE催化结构域(氨基酸78 - 261)的结构,结果表明BopE(78 - 261)由两个三螺旋束(α1α4α5和α2α3α6)组成。这种折叠结构与BopE的同源物SopE和SopE2相似,它们是来自沙门氏菌的GEF。SopE(78 - 240)和SopE2(69 - 240)的两个三螺旋束形成一个“λ”形的臂,而BopE(78 - 261)则采用更封闭的构象,两个三螺旋束之间存在大量相互作用。我们认为精氨酸和脯氨酸残基在BopE与SopE/E2的构象差异中起重要作用。对SopE(78 - 240)-Cdc42复合物晶体结构中分子界面的分析表明,在BopE与Cdc42的相互作用中,BopE(78 - 261)的封闭构象会与Cdc42的开关区域产生空间冲突。这意味着BopE(78 - 261)必须经历从封闭到开放的构象变化才能催化鸟嘌呤核苷酸交换。在一项用于研究BopE(78 - 261)-Cdc42相互作用的核磁共振滴定实验中,BopE(78 - 261)铰链区残基每个NH出现额外的峰,这表明在Cdc42存在的情况下,BopE(78 - 261)确实经历了从封闭到开放的构象变化。通过有利于开放构象的突变,BopE(78 - 261)的催化效率大幅提高,这进一步支持了构象变化假说。对从封闭到开放构象变化的需求解释了与SopE和SopE2相比,BopE的催化常数k(cat)低10 - 40倍的原因。

相似文献

5
SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell.
J Biol Chem. 2001 Sep 7;276(36):34035-40. doi: 10.1074/jbc.M100609200. Epub 2001 Jul 5.
6
8
Amino acids of the bacterial toxin SopE involved in G nucleotide exchange on Cdc42.
J Biol Chem. 2003 Jul 18;278(29):27149-59. doi: 10.1074/jbc.M302475200. Epub 2003 Apr 28.

引用本文的文献

1
BopE suppresses the Rab32-dependent defense pathway to promote its intracellular replication and virulence.
mSphere. 2024 Nov 21;9(11):e0045324. doi: 10.1128/msphere.00453-24. Epub 2024 Oct 21.
2
Type III Secretion in the Melioidosis Pathogen .
Front Cell Infect Microbiol. 2017 Jun 15;7:255. doi: 10.3389/fcimb.2017.00255. eCollection 2017.
4
Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages.
PLoS Pathog. 2014 Mar 13;10(3):e1003986. doi: 10.1371/journal.ppat.1003986. eCollection 2014 Mar.
5
Subversion of cell signaling by pathogens.
Cold Spring Harb Perspect Biol. 2012 Sep 1;4(9):a006114. doi: 10.1101/cshperspect.a006114.
7
Identification of F-actin as the dynamic hub in a microbial-induced GTPase polarity circuit.
Cell. 2012 Feb 17;148(4):803-15. doi: 10.1016/j.cell.2011.11.063.
8
Strategies for Intracellular Survival of Burkholderia pseudomallei.
Front Microbiol. 2011 Aug 22;2:170. doi: 10.3389/fmicb.2011.00170. eCollection 2011.
9
Bacterial protein toxins that modify host regulatory GTPases.
Nat Rev Microbiol. 2011 Jun 16;9(7):487-98. doi: 10.1038/nrmicro2592.

本文引用的文献

1
Structural evidence for a common intermediate in small G protein-GEF reactions.
Mol Cell. 2007 Jan 12;25(1):141-9. doi: 10.1016/j.molcel.2006.11.023.
2
Capturing cyclic nucleotides in action: snapshots from crystallographic studies.
Nat Rev Mol Cell Biol. 2007 Jan;8(1):63-73. doi: 10.1038/nrm2082.
3
Protein delivery into eukaryotic cells by type III secretion machines.
Nature. 2006 Nov 30;444(7119):567-73. doi: 10.1038/nature05272.
5
Melioidosis.
Curr Opin Infect Dis. 2006 Oct;19(5):421-8. doi: 10.1097/01.qco.0000244046.31135.b3.
6
The type III needle and the damage done.
Curr Opin Struct Biol. 2005 Dec;15(6):700-7. doi: 10.1016/j.sbi.2005.10.007. Epub 2005 Nov 2.
7
Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective.
FEMS Microbiol Rev. 2005 Apr;29(2):201-29. doi: 10.1016/j.femsre.2005.01.001.
9
Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei.
Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14240-5. doi: 10.1073/pnas.0403302101. Epub 2004 Sep 17.
10
Exploitation of host cells by Burkholderia pseudomallei.
Int J Med Microbiol. 2004 Apr;293(7-8):549-55. doi: 10.1078/1438-4221-00292.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验