Suppr超能文献

精子成熟过程中分泌蛋白的适应性进化:小鼠附睾转录组分析

Adaptive evolution of proteins secreted during sperm maturation: an analysis of the mouse epididymal transcriptome.

作者信息

Dean Matthew D, Good Jeffrey M, Nachman Michael W

机构信息

Department of Ecology and Evolutionary Biology, University of Arizona, USA.

出版信息

Mol Biol Evol. 2008 Feb;25(2):383-92. doi: 10.1093/molbev/msm265. Epub 2007 Dec 1.

Abstract

A common pattern observed in molecular evolution is that reproductive genes tend to evolve rapidly. However, most previous studies documenting this rapid evolution are based on genes expressed in just a few male reproductive organs. In mammals, sperm become motile and capable of fertilization only after leaving the testis, during their transit through the epididymis. Thus, genes expressed in the epididymis are expected to play important roles in male fertility. Here, we performed evolutionary genetic analyses on the epididymal transcriptome of mice. Overall, epididymis-expressed genes showed evidence of strong evolutionary constraint, a finding that contrasts with most previous analyses of genes expressed in other male reproductive organs. However, a subset of epididymis-specialized, secreted genes showed several signatures of adaptive evolution, including an increased rate of nonsynonymous evolution. Furthermore, this subset of genes was overrepresented on the X chromosome. Immunity and protein modification functions were significantly overrepresented among epididymis-specialized, secreted genes. These analyses identified a group of genes likely to be important in male reproductive success.

摘要

分子进化中一个常见的模式是生殖基因往往进化迅速。然而,之前大多数记录这种快速进化的研究都是基于仅在少数雄性生殖器官中表达的基因。在哺乳动物中,精子只有在离开睾丸并在附睾中转运时才会变得有活力并具备受精能力。因此,在附睾中表达的基因预计在雄性生育能力中发挥重要作用。在这里,我们对小鼠的附睾转录组进行了进化遗传学分析。总体而言,附睾表达的基因显示出受到强烈进化限制的证据,这一发现与之前对其他雄性生殖器官中表达的基因的大多数分析形成了对比。然而,一组附睾特化的分泌基因显示出适应性进化的几个特征,包括非同义进化速率的增加。此外,这组基因在X染色体上的比例过高。免疫和蛋白质修饰功能在附睾特化的分泌基因中显著富集。这些分析确定了一组可能对雄性生殖成功至关重要的基因。

相似文献

1
Adaptive evolution of proteins secreted during sperm maturation: an analysis of the mouse epididymal transcriptome.
Mol Biol Evol. 2008 Feb;25(2):383-92. doi: 10.1093/molbev/msm265. Epub 2007 Dec 1.
2
Sperm acquire epididymis-derived proteins through epididymosomes.
Hum Reprod. 2022 Apr 1;37(4):651-668. doi: 10.1093/humrep/deac015.
7
Impact of male fertility status on the transcriptome of the bovine epididymis.
Mol Hum Reprod. 2017 Jun 1;23(6):355-369. doi: 10.1093/molehr/gax019.
8
9
A small secreted protein NICOL regulates lumicrine-mediated sperm maturation and male fertility.
Nat Commun. 2023 Apr 24;14(1):2354. doi: 10.1038/s41467-023-37984-x.
10
The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction.
Int J Mol Sci. 2020 Jul 29;21(15):5377. doi: 10.3390/ijms21155377.

引用本文的文献

4
Seminal fluid gene expression and reproductive fitness in Drosophila melanogaster.
BMC Ecol Evol. 2022 Feb 23;22(1):20. doi: 10.1186/s12862-022-01975-1.
5
Nonadaptive molecular evolution of seminal fluid proteins in Drosophila.
Evolution. 2021 Aug;75(8):2102-2113. doi: 10.1111/evo.14297. Epub 2021 Jul 9.
9
Importance of SLC26 Transmembrane Anion Exchangers in Sperm Post-testicular Maturation and Fertilization Potential.
Front Cell Dev Biol. 2019 Oct 18;7:230. doi: 10.3389/fcell.2019.00230. eCollection 2019.
10
Positive Selection in the Evolution of Mammalian CRISPs.
J Mol Evol. 2018 Dec;86(9):635-645. doi: 10.1007/s00239-018-9872-6. Epub 2018 Oct 28.

本文引用的文献

1
SEX CHROMOSOMES AND THE EVOLUTION OF SEXUAL DIMORPHISM.
Evolution. 1984 Jul;38(4):735-742. doi: 10.1111/j.1558-5646.1984.tb00346.x.
2
X chromosome inactivation during Drosophila spermatogenesis.
PLoS Biol. 2007 Oct;5(10):e273. doi: 10.1371/journal.pbio.0050273.
3
The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides.
Biol Reprod. 2007 Apr;76(4):561-70. doi: 10.1095/biolreprod.106.057323. Epub 2006 Dec 13.
4
An ectopic expression screen reveals the protective and toxic effects of Drosophila seminal fluid proteins.
Genetics. 2007 Feb;175(2):777-83. doi: 10.1534/genetics.106.065318. Epub 2006 Nov 16.
5
Genomic and functional evolution of the Drosophila melanogaster sperm proteome.
Nat Genet. 2006 Dec;38(12):1440-5. doi: 10.1038/ng1915. Epub 2006 Nov 12.
6
Seminal fluid signaling in the female reproductive tract: lessons from rodents and pigs.
J Anim Sci. 2007 Mar;85(13 Suppl):E36-44. doi: 10.2527/jas.2006-578. Epub 2006 Nov 3.
7
The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus).
Mol Ecol. 2006 Nov;15(13):4141-51. doi: 10.1111/j.1365-294X.2006.03068.x.
8
Differential expression and antibacterial activity of WFDC10A in the monkey epididymis.
Mol Cell Endocrinol. 2006 Oct 19;259(1-2):50-6. doi: 10.1016/j.mce.2006.08.003. Epub 2006 Sep 20.
9
Protein evolution is faster outside the cell.
Mol Biol Evol. 2006 Nov;23(11):2039-48. doi: 10.1093/molbev/msl081. Epub 2006 Aug 4.
10
Evolution on the X chromosome: unusual patterns and processes.
Nat Rev Genet. 2006 Aug;7(8):645-53. doi: 10.1038/nrg1914.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验