Suppr超能文献

1q增益是髓母细胞瘤生存的潜在单变量负性预后标志物。

Gain of 1q is a potential univariate negative prognostic marker for survival in medulloblastoma.

作者信息

Lo Ken C, Ma Changxing, Bundy Brian N, Pomeroy Scott L, Eberhart Charles G, Cowell John K

机构信息

Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263, USA.

出版信息

Clin Cancer Res. 2007 Dec 1;13(23):7022-8. doi: 10.1158/1078-0432.CCR-07-1420.

Abstract

PURPOSE

Tumor risk stratification during diagnosis is paramount for children with medulloblastomas, primarily because very young patients (<3 years) suffer cognitive deficits from radio- and chemotherapy sequelae. Thus, distinguishing tumors that are biologically more aggressive is essential for medulloblastoma management to maximize the delay in radiation treatment without adversely affecting survival outcome. In this context, current strategies for risk assessment, which are based on clinical parameters, remain unsatisfactory.

EXPERIMENTAL DESIGN

Array-based comparative genomic hybridization (aCGH) was used to identify chromosomal copy number abnormalities in a cohort of 49 medulloblastoma tumors. Based on the karyotypes generated from aCGH analysis, each tumor was scored for copy number abnormalities, and the log-rank test was used to evaluate whether any cytogenetic events were associated with survival.

RESULTS

A single copy gain of 1q was shown to be a negative prognostic marker for survival in medulloblastomas with high statistical significance (P < 0.0001, log-rank test).

CONCLUSION

A gain of 1q provides a potential means of predicting overall survival in medulloblastoma.

摘要

目的

对于髓母细胞瘤患儿而言,诊断过程中的肿瘤风险分层至关重要,主要是因为非常年幼的患者(<3岁)会因放疗和化疗后遗症而出现认知缺陷。因此,区分生物学上更具侵袭性的肿瘤对于髓母细胞瘤的治疗至关重要,以便在不影响生存结果的前提下最大程度地延迟放疗。在此背景下,基于临床参数的当前风险评估策略仍不尽人意。

实验设计

采用基于芯片的比较基因组杂交技术(aCGH)来识别49例髓母细胞瘤肿瘤队列中的染色体拷贝数异常。根据aCGH分析产生的核型,对每个肿瘤的拷贝数异常进行评分,并使用对数秩检验来评估是否有任何细胞遗传学事件与生存相关。

结果

1q单拷贝增益被证明是髓母细胞瘤生存的负性预后标志物,具有高度统计学意义(P < 0.0001,对数秩检验)。

结论

1q增益为预测髓母细胞瘤的总体生存提供了一种潜在方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验