Suppr超能文献

大肠杆菌微阵列数据的全基因组偏相关分析

Genome-wide partial correlation analysis of Escherichia coli microarray data.

作者信息

Veiga D F T, Vicente F F R, Grivet M, de la Fuente A, Vasconcelos A T R

机构信息

Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, RJ, Brasil.

出版信息

Genet Mol Res. 2007 Oct 5;6(4):730-42.

Abstract

Transcriptional control is an essential regulatory mechanism employed by bacteria. Much about transcriptional regulation remains to be discovered, even for the most widely studied bacterium, Escherichia coli. In the present study, we made a genome-wide low-order partial correlation analysis of E. coli microarray data with the purpose of recovering regulatory interactions from transcriptome data. As a result, we produced whole genome transcription factor regulation and co-regulation graphs using the predicted interactions, and we demonstrated how they can be used to investigate regulation and biological function. We concluded that partial correlation analysis can be employed as a method to predict putative regulatory interactions from expression data, as a complementary approach to transcription factor binding site tools and other tools designed to detect co-regulated genes.

摘要

转录调控是细菌所采用的一种重要调控机制。即便对于研究最为广泛的细菌——大肠杆菌而言,有关转录调控仍有许多有待发现之处。在本研究中,我们对大肠杆菌微阵列数据进行了全基因组低阶偏相关分析,目的是从转录组数据中恢复调控相互作用。结果,我们利用预测出的相互作用生成了全基因组转录因子调控图和共调控图,并展示了如何利用它们来研究调控和生物学功能。我们得出结论,偏相关分析可用作一种从表达数据预测假定调控相互作用的方法,作为转录因子结合位点工具以及其他旨在检测共调控基因的工具的一种补充方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验