Suppr超能文献

从社会经济指标的大型时间序列数据中挖掘精确的因果规则。

Mining precise cause and effect rules in large time series data of socio-economic indicators.

作者信息

Hira Swati, Deshpande P S

机构信息

Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, 440010 Nagpur, India.

出版信息

Springerplus. 2016 Sep 21;5(1):1625. doi: 10.1186/s40064-016-3292-0. eCollection 2016.

Abstract

Discovery of cause-effect relationships, particularly in large databases of time-series is challenging because of continuous data of different characteristics and complex lagged relationships. In this paper, we have proposed a novel approach, to extract cause-effect relationships in large time series data set of socioeconomic indicators. The method enhances the scope of relationship discovery to cause-effect relationships by identifying multiple causal structures such as binary, transitive, many to one and cyclic. We use temporal association and temporal odds ratio to exclude noncausal association and to ensure the high reliability of discovered causal rules. We assess the method with both synthetic and real-world datasets. Our proposed method will help to build quantitative models to analyze socioeconomic processes by generating a precise cause-effect relationship between different economic indicators. The outcome shows that the proposed method can effectively discover existing causality structure in large time series databases.

摘要

发现因果关系,尤其是在大型时间序列数据库中,具有挑战性,因为存在具有不同特征的连续数据以及复杂的滞后关系。在本文中,我们提出了一种新颖的方法,用于在社会经济指标的大型时间序列数据集中提取因果关系。该方法通过识别多种因果结构,如二元、传递、多对一和循环因果结构,扩大了关系发现到因果关系的范围。我们使用时间关联和时间优势比来排除非因果关联,并确保所发现因果规则的高可靠性。我们使用合成数据集和真实世界数据集对该方法进行评估。我们提出的方法将有助于通过生成不同经济指标之间精确的因果关系来构建定量模型,以分析社会经济过程。结果表明,所提出的方法能够有效地在大型时间序列数据库中发现现有的因果结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b885/5031588/cb5adde78b37/40064_2016_3292_Fig1_HTML.jpg

相似文献

1
Mining precise cause and effect rules in large time series data of socio-economic indicators.
Springerplus. 2016 Sep 21;5(1):1625. doi: 10.1186/s40064-016-3292-0. eCollection 2016.
2
CauRuler: Causal irredundant association rule miner for complex patient trajectory modelling.
Comput Biol Med. 2023 Mar;155:106636. doi: 10.1016/j.compbiomed.2023.106636. Epub 2023 Feb 9.
4
Detecting and quantifying causal associations in large nonlinear time series datasets.
Sci Adv. 2019 Nov 27;5(11):eaau4996. doi: 10.1126/sciadv.aau4996. eCollection 2019 Nov.
6
Extracting Temporal Relationships in EHR: Application to COVID-19 Patients.
Stud Health Technol Inform. 2023 May 18;302:546-550. doi: 10.3233/SHTI230202.
9
Co-Operative Coevolutionary Neural Networks for Mining Functional Association Rules.
IEEE Trans Neural Netw Learn Syst. 2017 Jun;28(6):1331-1344. doi: 10.1109/TNNLS.2016.2536104. Epub 2016 Mar 18.

本文引用的文献

1
A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance.
IEEE Trans Inf Technol Biomed. 2011 May;15(3):428-37. doi: 10.1109/TITB.2011.2131669. Epub 2011 Mar 24.
2
From knockouts to networks: establishing direct cause-effect relationships through graph analysis.
PLoS One. 2010 Oct 11;5(10):e12912. doi: 10.1371/journal.pone.0012912.
3
A dynamic Bayesian network for identifying protein-binding footprints from single molecule-based sequencing data.
Bioinformatics. 2010 Jun 15;26(12):i334-42. doi: 10.1093/bioinformatics/btq175.
4
Cohort studies: prospective versus retrospective.
Nephron Clin Pract. 2009;113(3):c214-7. doi: 10.1159/000235241. Epub 2009 Aug 18.
5
Grouped graphical Granger modeling for gene expression regulatory networks discovery.
Bioinformatics. 2009 Jun 15;25(12):i110-8. doi: 10.1093/bioinformatics/btp199.
7
A primer on learning in Bayesian networks for computational biology.
PLoS Comput Biol. 2007 Aug;3(8):e129. doi: 10.1371/journal.pcbi.0030129.
8
Causal protein-signaling networks derived from multiparameter single-cell data.
Science. 2005 Apr 22;308(5721):523-9. doi: 10.1126/science.1105809.
10
Using Bayesian networks to analyze expression data.
J Comput Biol. 2000;7(3-4):601-20. doi: 10.1089/106652700750050961.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验