Suppr超能文献

大肠杆菌中条件依赖型转录网络。

The condition-dependent transcriptional network in Escherichia coli.

作者信息

Lemmens Karen, De Bie Tijl, Dhollander Thomas, Monsieurs Pieter, De Moor Bart, Collado-Vides Julio, Engelen Kristof, Marchal Kathleen

机构信息

Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.

出版信息

Ann N Y Acad Sci. 2009 Mar;1158:29-35. doi: 10.1111/j.1749-6632.2008.03746.x.

Abstract

Thanks to the availability of high-throughput omics data, bioinformatics approaches are able to hypothesize thus-far undocumented genetic interactions. However, due to the amount of noise in these data, inferences based on a single data source are often unreliable. A popular approach to overcome this problem is to integrate different data sources. In this study, we describe DISTILLER, a novel framework for data integration that simultaneously analyzes microarray and motif information to find modules that consist of genes that are co-expressed in a subset of conditions, and their corresponding regulators. By applying our method on publicly available data, we evaluated the condition-specific transcriptional network of Escherichia coli. DISTILLER confirmed 62% of 736 interactions described in RegulonDB, and 278 novel interactions were predicted.

摘要

得益于高通量组学数据的可得性,生物信息学方法能够对迄今未记录的基因相互作用进行假设。然而,由于这些数据中的噪声量,基于单一数据源的推断往往不可靠。一种克服此问题的常用方法是整合不同的数据源。在本研究中,我们描述了DISTILLER,这是一种用于数据整合的新型框架,它同时分析微阵列和基序信息,以找到由在一组条件下共表达的基因及其相应调节因子组成的模块。通过将我们的方法应用于公开可用的数据,我们评估了大肠杆菌的条件特异性转录网络。DISTILLER证实了RegulonDB中描述的736种相互作用中的62%,并预测了278种新的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验