Suppr超能文献

Beta2-adrenergic receptors expressed on murine chondrocytes stimulate cellular growth and inhibit the expression of Indian hedgehog and collagen type X.

作者信息

Lai Lick Pui, Mitchell Jane

机构信息

Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.

出版信息

J Cell Biochem. 2008 May 15;104(2):545-53. doi: 10.1002/jcb.21646.

Abstract

The sympathetic nervous system has been demonstrated to have a role in regulating bone remodeling through beta-adrenergic receptors (beta-AR) expressed on osteoblasts. Studies using beta(2)-adrenergic receptor agonists in vivo have also suggested an effect on endochondral bone development; however, it was not clear if this effect was mediated through osteoblasts or chondrocytes. To more thoroughly examine the role of beta-AR in chondrocytes we characterized the expression and signal transduction systems activated by beta-AR in growth plate chondrocytes prepared from ribs of embryonic E18.5 mice. Using RT-PCR and immunohistochemistry we found that the chondrocytes expressed only beta(2)-AR. The receptors were coupled to stimulation of adenylyl cyclase, phosphorylation of the cyclic AMP response element binding protein (CREB) and extracellular signal-regulated kinase (ERK1/2). Stimulation of ERK1/2 was transient and limited by the concomitant stimulation of the mitogen-activated protein kinase phosphatase (MKP-1). Isoproterenol stimulated the growth of chondrocytes as assessed by increased incorporation of [(3)H]-thymidine into the cells. The cellular expression of two markers of chondrocyte differentiation, Indian hedgehog, expressed in pre-hypertrophic cells and collagen type X, expressed in hypertrophic chondrocytes, were both significantly inhibited after incubation with isoproterenol. Collectively, these findings demonstrate regulation of chondrocytes through beta(2)-AR expressed on the cells that stimulate their growth and inhibit their differentiation, indicating that the sympathetic nervous system may be an important regulator of embryonic cartilage development.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验