Bankston John R, Yue Minerva, Chung Wendy, Spyres Meghan, Pass Robert H, Silver Eric, Sampson Kevin J, Kass Robert S
Department of Pharmacology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York, United States of America.
PLoS One. 2007 Dec 5;2(12):e1258. doi: 10.1371/journal.pone.0001258.
SCN5A encodes the alpha-subunit (Na(v)1.5) of the principle Na(+) channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LQTS) variant 3 (LQT-3) in adults by disrupting inactivation of the Na(v)1.5 channel. Pharmacological targeting of mutation-altered Na(+) channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LQTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS) and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults.
Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C) discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na(+) channel blockers flecainide and mexiletine. Our goal was to determine the Na(+) channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na(+) channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C) and a common variant in KCNH2 (K897T). Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na(+) channels revealed significant changes in channel biophysics, all contributing to the proband's phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically.
The results of our study provide further evidence of the grave vulnerability of newborns to Na(+) channel defects and suggest that both genetic background and age are particularly important in developing a mutation-specific therapeutic personalized approach to manage disorders in the young.
SCN5A编码人类心脏主要钠离子通道的α亚基(Na(v)1.5)。SCN5A中的基因损伤可通过破坏Na(v)1.5通道的失活,在成人中导致先天性长QT综合征(LQTS)3型(LQT-3)。事实证明,对突变改变的钠离子通道进行药理学靶向治疗,在开发一种基因特异性治疗策略以专门管理这种LQTS变体方面很有前景。导致类似通道功能障碍的SCN5A突变也可能导致婴儿猝死综合征(SIDS)和新生儿的其他心律失常,但与成人相比,SCN5A突变在婴儿中的患病率、影响和治疗管理可能有所不同。
在此,我们采用多学科方法,报告了在一名出现极长QT间期延长且对钠离子通道阻滞剂氟卡尼和美西律有不同反应的新生儿中发现的一种新生SCN5A突变(F1473C)。我们的目标是确定由这种严重突变引起的钠离子通道表型,并确定不同钠离子通道阻滞剂对突变通道活性的不同影响是否能为突变携带者独特的治疗反应提供机制上的理解。对先证者的序列分析揭示了新的错义SCN5A突变(F1473C)和KCNH2中的一个常见变体(K897T)。对瞬时转染野生型或突变型钠离子通道的HEK 293细胞进行膜片钳分析,发现通道生物物理学有显著变化,所有这些变化都导致了先证者的表型,正如计算机模拟所预测的那样。此外,在纠正突变通道活性方面检测到药物作用的细微差异,这些差异与已知的遗传背景和患者年龄一起,导致了临床上观察到的独特治疗反应。
我们的研究结果进一步证明了新生儿对钠离子通道缺陷的严重易感性,并表明遗传背景和年龄在制定针对年轻人疾病的突变特异性个性化治疗方法中都尤为重要。