Suppr超能文献

相似文献

1
Detection of Na1.5 Conformational Change in Mammalian Cells Using the Noncanonical Amino Acid ANAP.
Biophys J. 2019 Oct 1;117(7):1352-1363. doi: 10.1016/j.bpj.2019.08.028. Epub 2019 Aug 29.
3
Conformational photo-trapping in Na1.5: Inferring local motions at the "inactivation gate".
Biophys J. 2024 Jul 16;123(14):2167-2175. doi: 10.1016/j.bpj.2024.04.017. Epub 2024 Apr 24.
4
Elementary mechanisms of calmodulin regulation of Na1.5 producing divergent arrhythmogenic phenotypes.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2025085118.
7
A distinct molecular mechanism by which phenytoin rescues a novel long QT 3 variant.
J Mol Cell Cardiol. 2020 Jul;144:1-11. doi: 10.1016/j.yjmcc.2020.04.027. Epub 2020 Apr 24.
8
Open-state structure and pore gating mechanism of the cardiac sodium channel.
Cell. 2021 Sep 30;184(20):5151-5162.e11. doi: 10.1016/j.cell.2021.08.021. Epub 2021 Sep 13.
9
β1 subunit stabilises sodium channel Nav1.7 against mechanical stress.
J Physiol. 2018 Jun;596(12):2433-2445. doi: 10.1113/JP275905. Epub 2018 May 20.
10
ANAP: A versatile, fluorescent probe of ion channel gating and regulation.
Methods Enzymol. 2021;654:49-84. doi: 10.1016/bs.mie.2021.01.048. Epub 2021 Mar 16.

引用本文的文献

1
Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology.
Chem Rev. 2024 Oct 23;124(20):11523-11543. doi: 10.1021/acs.chemrev.4c00306. Epub 2024 Aug 29.
2
Dynamic landscape of the intracellular termini of acid-sensing ion channel 1a.
Elife. 2023 Dec 6;12:RP90755. doi: 10.7554/eLife.90755.
3
Applications of genetic code expansion technology in eukaryotes.
Protein Cell. 2024 May 7;15(5):331-363. doi: 10.1093/procel/pwad051.
5
Engineering of enzymes using non-natural amino acids.
Biosci Rep. 2022 Aug 31;42(8). doi: 10.1042/BSR20220168.
6
Conformations of voltage-sensing domain III differentially define NaV channel closed- and open-state inactivation.
J Gen Physiol. 2021 Sep 6;153(9). doi: 10.1085/jgp.202112891. Epub 2021 Aug 4.
7
Genetic Code Expansion: A Brief History and Perspective.
Biochemistry. 2021 Nov 23;60(46):3455-3469. doi: 10.1021/acs.biochem.1c00286. Epub 2021 Jul 1.

本文引用的文献

2
Structures of human Na1.7 channel in complex with auxiliary subunits and animal toxins.
Science. 2019 Mar 22;363(6433):1303-1308. doi: 10.1126/science.aaw2493. Epub 2019 Feb 14.
3
Molecular basis for pore blockade of human Na channel Na1.2 by the μ-conotoxin KIIIA.
Science. 2019 Mar 22;363(6433):1309-1313. doi: 10.1126/science.aaw2999. Epub 2019 Feb 14.
4
Structural basis of α-scorpion toxin action on Na channels.
Science. 2019 Mar 22;363(6433). doi: 10.1126/science.aav8573. Epub 2019 Feb 7.
5
Dynamic rearrangement of the intrinsic ligand regulates KCNH potassium channels.
J Gen Physiol. 2018 Apr 2;150(4):625-635. doi: 10.1085/jgp.201711989. Epub 2018 Mar 22.
6
High-Sensitivity Fluorometry to Resolve Ion Channel Conformational Dynamics.
Cell Rep. 2018 Feb 6;22(6):1615-1626. doi: 10.1016/j.celrep.2018.01.029.
7
Expanding and reprogramming the genetic code.
Nature. 2017 Oct 4;550(7674):53-60. doi: 10.1038/nature24031.
8
Structure of the Na1.4-β1 Complex from Electric Eel.
Cell. 2017 Jul 27;170(3):470-482.e11. doi: 10.1016/j.cell.2017.06.039. Epub 2017 Jul 20.
10
Molecular mechanism of voltage-dependent potentiation of KCNH potassium channels.
Elife. 2017 Apr 27;6:e26355. doi: 10.7554/eLife.26355.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验