Fredj Sandra, Sampson Kevin J, Liu Huajun, Kass Robert S
Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA.
Br J Pharmacol. 2006 May;148(1):16-24. doi: 10.1038/sj.bjp.0706709.
1 We studied the effects of ranolazine, an antianginal agent with promise as an antiarrhythmic drug, on wild-type (WT) and long QT syndrome variant 3 (LQT-3) mutant Na(+) channels expressed in human embryonic kidney (HEK) 293 cells and knock-in mouse cardiomyocytes and used site-directed mutagenesis to probe the site of action of the drug. 2 We find preferential ranolazine block of sustained vs peak Na(+) channel current for LQT-3 mutant (DeltaKPQ and Y1795C) channels (IC(50)=15 vs 135 microM) with similar results obtained in HEK 293 cells and knock-in myocytes. 3 Ranolazine block of both peak and sustained Na(+) channel current is significantly reduced by mutation (F1760A) of a single residue previously shown to contribute critically to the binding site for local anesthetic (LA) molecules in the Na(+) channel. 4 Ranolazine significantly decreases action potential duration (APD) at 50 and 90% repolarization by 23+/-5 and 27+/-3%, respectively, in DeltaKPQ mouse ventricular myocytes but has little effect on APD of WT myocytes. 5 Computational modeling of human cardiac myocyte electrical activity that incorporates our voltage-clamp data predicts marked ranolazine-induced APD shortening in cells expressing LQT-3 mutant channels. 6 Our results demonstrate for the first time the utility of ranolazine as a blocker of sustained Na(+) channel activity induced by inherited mutations that cause human disease and further, that these effects are very likely due to interactions of ranolazine with the receptor site for LA molecules in the sodium channel.
我们研究了雷诺嗪(一种有望作为抗心律失常药物的抗心绞痛药)对在人胚肾(HEK)293细胞和基因敲入小鼠心肌细胞中表达的野生型(WT)和长QT综合征变异3型(LQT - 3)突变体Na(+)通道的影响,并使用定点诱变来探究该药物的作用位点。
我们发现雷诺嗪对LQT - 3突变体(DeltaKPQ和Y1795C)通道的持续Na(+)通道电流与峰值Na(+)通道电流有优先阻断作用(IC(50)=15对135 microM),在HEK 293细胞和基因敲入心肌细胞中得到了类似结果。
单个残基(F1760A)的突变显著降低了雷诺嗪对峰值和持续Na(+)通道电流的阻断作用,该残基先前已被证明对Na(+)通道中局部麻醉药(LA)分子的结合位点起关键作用。
在DeltaKPQ小鼠心室肌细胞中,雷诺嗪分别使50%和90%复极化时的动作电位时程(APD)显著降低23±5%和27±3%,但对WT心肌细胞的APD影响很小。
结合我们电压钳数据的人类心肌细胞电活动计算模型预测,在表达LQT - 3突变通道的细胞中,雷诺嗪会显著诱导APD缩短。
我们的结果首次证明了雷诺嗪作为由导致人类疾病的遗传突变诱导的持续Na(+)通道活性阻滞剂的效用,并且进一步表明,这些作用很可能是由于雷诺嗪与钠通道中LA分子的受体位点相互作用所致。