Suppr超能文献

雷诺嗪对LQT-3突变钠通道的阻滞作用的分子基础:作用位点的证据

Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action.

作者信息

Fredj Sandra, Sampson Kevin J, Liu Huajun, Kass Robert S

机构信息

Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA.

出版信息

Br J Pharmacol. 2006 May;148(1):16-24. doi: 10.1038/sj.bjp.0706709.

Abstract

1 We studied the effects of ranolazine, an antianginal agent with promise as an antiarrhythmic drug, on wild-type (WT) and long QT syndrome variant 3 (LQT-3) mutant Na(+) channels expressed in human embryonic kidney (HEK) 293 cells and knock-in mouse cardiomyocytes and used site-directed mutagenesis to probe the site of action of the drug. 2 We find preferential ranolazine block of sustained vs peak Na(+) channel current for LQT-3 mutant (DeltaKPQ and Y1795C) channels (IC(50)=15 vs 135 microM) with similar results obtained in HEK 293 cells and knock-in myocytes. 3 Ranolazine block of both peak and sustained Na(+) channel current is significantly reduced by mutation (F1760A) of a single residue previously shown to contribute critically to the binding site for local anesthetic (LA) molecules in the Na(+) channel. 4 Ranolazine significantly decreases action potential duration (APD) at 50 and 90% repolarization by 23+/-5 and 27+/-3%, respectively, in DeltaKPQ mouse ventricular myocytes but has little effect on APD of WT myocytes. 5 Computational modeling of human cardiac myocyte electrical activity that incorporates our voltage-clamp data predicts marked ranolazine-induced APD shortening in cells expressing LQT-3 mutant channels. 6 Our results demonstrate for the first time the utility of ranolazine as a blocker of sustained Na(+) channel activity induced by inherited mutations that cause human disease and further, that these effects are very likely due to interactions of ranolazine with the receptor site for LA molecules in the sodium channel.

摘要
  1. 我们研究了雷诺嗪(一种有望作为抗心律失常药物的抗心绞痛药)对在人胚肾(HEK)293细胞和基因敲入小鼠心肌细胞中表达的野生型(WT)和长QT综合征变异3型(LQT - 3)突变体Na(+)通道的影响,并使用定点诱变来探究该药物的作用位点。

  2. 我们发现雷诺嗪对LQT - 3突变体(DeltaKPQ和Y1795C)通道的持续Na(+)通道电流与峰值Na(+)通道电流有优先阻断作用(IC(50)=15对135 microM),在HEK 293细胞和基因敲入心肌细胞中得到了类似结果。

  3. 单个残基(F1760A)的突变显著降低了雷诺嗪对峰值和持续Na(+)通道电流的阻断作用,该残基先前已被证明对Na(+)通道中局部麻醉药(LA)分子的结合位点起关键作用。

  4. 在DeltaKPQ小鼠心室肌细胞中,雷诺嗪分别使50%和90%复极化时的动作电位时程(APD)显著降低23±5%和27±3%,但对WT心肌细胞的APD影响很小。

  5. 结合我们电压钳数据的人类心肌细胞电活动计算模型预测,在表达LQT - 3突变通道的细胞中,雷诺嗪会显著诱导APD缩短。

  6. 我们的结果首次证明了雷诺嗪作为由导致人类疾病的遗传突变诱导的持续Na(+)通道活性阻滞剂的效用,并且进一步表明,这些作用很可能是由于雷诺嗪与钠通道中LA分子的受体位点相互作用所致。

相似文献

1
Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action.
Br J Pharmacol. 2006 May;148(1):16-24. doi: 10.1038/sj.bjp.0706709.
2
Ranolazine and late cardiac sodium current--a therapeutic target for angina, arrhythmia and more?
Br J Pharmacol. 2006 May;148(1):4-6. doi: 10.1038/sj.bjp.0706713.
3
State- and use-dependent block of muscle Nav1.4 and neuronal Nav1.7 voltage-gated Na+ channel isoforms by ranolazine.
Mol Pharmacol. 2008 Mar;73(3):940-8. doi: 10.1124/mol.107.041541. Epub 2007 Dec 13.
4
Ranolazine for congenital and acquired late INa-linked arrhythmias: in silico pharmacological screening.
Circ Res. 2013 Sep 13;113(7):e50-e61. doi: 10.1161/CIRCRESAHA.113.301971. Epub 2013 Jul 29.
5
Ranolazine decreases mechanosensitivity of the voltage-gated sodium ion channel Na(v)1.5: a novel mechanism of drug action.
Circulation. 2012 Jun 5;125(22):2698-706. doi: 10.1161/CIRCULATIONAHA.112.094714. Epub 2012 May 7.
6
Is ranolazine an antiarrhythmic drug?
Am J Physiol Heart Circ Physiol. 2008 May;294(5):H1989-91. doi: 10.1152/ajpheart.00285.2008. Epub 2008 Mar 28.
7
Ranolazine inhibition of hERG potassium channels: drug-pore interactions and reduced potency against inactivation mutants.
J Mol Cell Cardiol. 2014 Sep;74(100):220-30. doi: 10.1016/j.yjmcc.2014.05.013. Epub 2014 May 27.
10
Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current.
J Cardiovasc Electrophysiol. 2006 May;17 Suppl 1(Suppl 1):S169-S177. doi: 10.1111/j.1540-8167.2006.00401.x.

引用本文的文献

1
Voltage-gated sodium channels in excitable cells as drug targets.
Nat Rev Drug Discov. 2025 May;24(5):358-378. doi: 10.1038/s41573-024-01108-x. Epub 2025 Feb 3.
2
Structural basis for inhibition of the cardiac sodium channel by the atypical antiarrhythmic drug ranolazine.
Nat Cardiovasc Res. 2023 Jun;2(6):587-594. doi: 10.1038/s44161-023-00271-5. Epub 2023 May 4.
3
The potential anti-arrhythmic effect of SGLT2 inhibitors.
Cardiovasc Diabetol. 2024 Jul 15;23(1):252. doi: 10.1186/s12933-024-02312-0.
4
Calculations of the binding free energies of the Comprehensive Proarrhythmia Assay (CiPA) reference drugs to cardiac ion channels.
Biophys Physicobiol. 2023 Mar 25;20(2):e200016. doi: 10.2142/biophysico.bppb-v20.0016. eCollection 2023.
5
Pharmacologic modulation of intracellular Na concentration with ranolazine impacts inflammatory response in humans and mice.
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2207020119. doi: 10.1073/pnas.2207020119. Epub 2022 Jul 13.
8
Cardioprotection by SGLT2 Inhibitors-Does It All Come Down to Na?
Int J Mol Sci. 2021 Jul 26;22(15):7976. doi: 10.3390/ijms22157976.
10
Effects of Allicin on Late Sodium Current Caused by ΔKPQ-SCN5A Mutation in HEK293 Cells.
Front Physiol. 2021 Mar 29;12:636485. doi: 10.3389/fphys.2021.636485. eCollection 2021.

本文引用的文献

1
Long QT syndrome: from channels to cardiac arrhythmias.
J Clin Invest. 2005 Aug;115(8):2018-24. doi: 10.1172/JCI25537.
2
The channelopathies: novel insights into molecular and genetic mechanisms of human disease.
J Clin Invest. 2005 Aug;115(8):1986-9. doi: 10.1172/JCI26011.
3
Increased late sodium current in myocytes from a canine heart failure model and from failing human heart.
J Mol Cell Cardiol. 2005 Mar;38(3):475-83. doi: 10.1016/j.yjmcc.2004.12.012.
4
Inherited and acquired vulnerability to ventricular arrhythmias: cardiac Na+ and K+ channels.
Physiol Rev. 2005 Jan;85(1):33-47. doi: 10.1152/physrev.00005.2004.
5
Electrophysiologic properties and antiarrhythmic actions of a novel antianginal agent.
J Cardiovasc Pharmacol Ther. 2004 Sep;9 Suppl 1:S65-83. doi: 10.1177/107424840400900106.
6
Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties.
Circulation. 2004 Aug 24;110(8):904-10. doi: 10.1161/01.CIR.0000139333.83620.5D. Epub 2004 Aug 9.
7
Antagonism by ranolazine of the pro-arrhythmic effects of increasing late INa in guinea pig ventricular myocytes.
J Cardiovasc Pharmacol. 2004 Aug;44(2):192-9. doi: 10.1097/00005344-200408000-00008.
8
Antiarrhythmic effects of ranolazine in a guinea pig in vitro model of long-QT syndrome.
J Pharmacol Exp Ther. 2004 Aug;310(2):599-605. doi: 10.1124/jpet.104.066100. Epub 2004 Mar 18.
9
The Na+ channel inactivation gate is a molecular complex: a novel role of the COOH-terminal domain.
J Gen Physiol. 2004 Feb;123(2):155-65. doi: 10.1085/jgp.200308929.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验