Department of Chemistry , Bryn Mawr College , Bryn Mawr , Pennsylvania 19010 , United States.
Department of Chemistry and Chemical Biology , The University of New Mexico , MSC03 2060, 1 University of New Mexico , Albuquerque , New Mexico 87131-0001 , United States.
J Am Chem Soc. 2018 Oct 10;140(40):12808-12818. doi: 10.1021/jacs.8b05777. Epub 2018 Oct 2.
The large family of mononuclear molybdenum and tungsten enzymes all possess the special ligand molybdopterin (MPT), which consists of a metal-binding dithiolene chelate covalently bound to a pyranopterin group. MPT pyran cyclization/scission processes have been proposed to modulate the reactivity of the metal center during catalysis. We have designed several small-molecule models for the Mo-MPT cofactor that allow detailed investigation into how pyran cyclization modulates electronic communication between the dithiolene and pterin moieties and how this cyclization alters the electronic environment of the molybdenum catalytic site. Using a combination of cyclic voltammetry, vibrational spectroscopy (FT-IR and rR), electronic absorption spectroscopy, and X-ray absorption spectroscopy, distinct changes in the Mo≡O stretching frequency, Mo(V/IV) reduction potential, and electronic structure across the pterin-dithiolene ligand are observed as a function of pyran ring closure. The results are significant, for they reveal that a dihydropyranopterin is electronically coupled into the Mo-dithiolene group due to a coplanar conformation of the pterin and dithiolene units, providing a mechanism for the electron-deficient pterin to modulate the Mo environment. A spectroscopic signature identified for the dihydropyranopterin-dithiolene ligand on Mo is a strong dithiolene → pterin charge transfer transition. In the absence of a pyran group bridge between pterin and dithiolene, the pterin rotates out of plane, largely decoupling the system. The results support a hypothesis that pyran cyclization/scission processes in MPT may function as a molecular switch to electronically couple and decouple the pterin and dithiolene to adjust the redox properties in certain pyranopterin molybdenum enzymes.
单核钼和钨酶的大家族都具有特殊的配体钼喋呤(MPT),它由一个金属结合二硫烯螯合物与一个吡喃蝶呤基团共价结合组成。MPT 吡喃环化/断裂过程被提出用于调节催化过程中金属中心的反应性。我们设计了几种钼-MPT 辅因子的小分子模型,允许详细研究吡喃环化如何调节二硫烯和蝶呤部分之间的电子通讯,以及这种环化如何改变钼催化位点的电子环境。使用循环伏安法、振动光谱(FT-IR 和 rR)、电子吸收光谱和 X 射线吸收光谱,观察到 Mo≡O 伸缩频率、Mo(V/IV)还原电位和蝶呤-二硫烯配体电子结构在吡喃环闭合过程中发生明显变化。这些结果意义重大,因为它们表明由于蝶呤和二硫烯单元的共面构象,二氢蝶呤被电子耦合到 Mo-二硫烯基团中,为缺电子蝶呤调节 Mo 环境提供了一种机制。在 Mo 上鉴定出二氢蝶呤-二硫烯配体的光谱特征是强烈的二硫烯→蝶呤电荷转移跃迁。在蝶呤和二硫烯之间没有吡喃基团桥的情况下,蝶呤会偏离平面,从而使系统很大程度上解耦。结果支持这样一种假设,即 MPT 中的吡喃环化/断裂过程可能作为分子开关,电子偶联和去偶联蝶呤和二硫烯,以调整某些吡喃蝶呤钼酶中的氧化还原性质。